A new high spectral resolution crystal spectrometer is designed to measure very low emissive X-ray spectra of laser-produced plasma in 0.5-0.9 nm range. A large open aperture (30 ×20 (mm)) mica (002) spheri...A new high spectral resolution crystal spectrometer is designed to measure very low emissive X-ray spectra of laser-produced plasma in 0.5-0.9 nm range. A large open aperture (30 ×20 (mm)) mica (002) spherically bent crystal with curvature radius R = 380 mm is used as dispersive and focusing element. The imaging plate is employed to obtain high spectral resolution with effective area of 30 × 80 (mm). The long designed path of the X-ray spectrometer beam is 980 mm from the source to the detector via the crystal. Experiment is carried out at a 20-J laser facility. X-ray spectra in an absolute intensity scale is obtained from Al laserproduced plasmas created by laser energy of 6.78 J. Samples of spectra obtained with spectral resolution of up to E/△E - 1500 are presented. The results clearly show that the device is good to diagnose laser high-density plasmas.展开更多
A wide variety of X-ray and extreme ultraviolet diagnostics are being developed to study on Yang accelerator. An elliptically bent crystal spectrometer is designed with a focal length of 1350 mm. A mica crystal with a...A wide variety of X-ray and extreme ultraviolet diagnostics are being developed to study on Yang accelerator. An elliptically bent crystal spectrometer is designed with a focal length of 1350 mm. A mica crystal with an interplanar spacing of 1.984 nm bent onto an elliptical substrate with eccentricity of 0.9485 is used. The crystal analyzer covers the Bragg angle range from 30° to 60°. The mica crystal can efficiently reflect radiation in multiple orders, covering the entire spectral range from 0.1 to 1.73 nm except for a gap from 0.86 to 1.0 nm. The application experiment is performed on Yang accelerator using the bent mica crystal analyzer. Spectra of neon-puff Z-pinch plasmas are recorded with a X-ray film, showing the H-like and the He-like lines of neon. Each spectrum has been identified and used for the wavelength calibration, and most of the line radiation is contained in the He-α and the L-α lines. The experimental results have demonstrated that the spectral resolution approximates 379.展开更多
Nanometer sized lead molybdate (PbMoO4) plates are prepared through conventional hydrothermal together with sonochemical methods. The plates are then characterized using field-emission scanning electron microscopy, ...Nanometer sized lead molybdate (PbMoO4) plates are prepared through conventional hydrothermal together with sonochemical methods. The plates are then characterized using field-emission scanning electron microscopy, X-ray diffractometry, Fourier transform infrared (FTIR) spectrometry, photoluminescence spectrometry, and ultraviolet-visible (UV-VIS) spectrometry. The results indicate that the nanoplates have a characteristically narrow particle size distribution and their tetragonal scheelite-type structure is confirmed by both X-ray diffractometry and FTIR spectrometry. When the nanoplates are compared with the corresponding bulk crystals, blue shifts in their photoluminescence peaks, wider optical band gaps, and the broadening of the X-ray diffractometer peaks are observed. These can be ascribed to the decrease in crystal size.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.10576041
文摘A new high spectral resolution crystal spectrometer is designed to measure very low emissive X-ray spectra of laser-produced plasma in 0.5-0.9 nm range. A large open aperture (30 ×20 (mm)) mica (002) spherically bent crystal with curvature radius R = 380 mm is used as dispersive and focusing element. The imaging plate is employed to obtain high spectral resolution with effective area of 30 × 80 (mm). The long designed path of the X-ray spectrometer beam is 980 mm from the source to the detector via the crystal. Experiment is carried out at a 20-J laser facility. X-ray spectra in an absolute intensity scale is obtained from Al laserproduced plasmas created by laser energy of 6.78 J. Samples of spectra obtained with spectral resolution of up to E/△E - 1500 are presented. The results clearly show that the device is good to diagnose laser high-density plasmas.
基金the National Natural Science Foundation of China under Grant No.10576041.
文摘A wide variety of X-ray and extreme ultraviolet diagnostics are being developed to study on Yang accelerator. An elliptically bent crystal spectrometer is designed with a focal length of 1350 mm. A mica crystal with an interplanar spacing of 1.984 nm bent onto an elliptical substrate with eccentricity of 0.9485 is used. The crystal analyzer covers the Bragg angle range from 30° to 60°. The mica crystal can efficiently reflect radiation in multiple orders, covering the entire spectral range from 0.1 to 1.73 nm except for a gap from 0.86 to 1.0 nm. The application experiment is performed on Yang accelerator using the bent mica crystal analyzer. Spectra of neon-puff Z-pinch plasmas are recorded with a X-ray film, showing the H-like and the He-like lines of neon. Each spectrum has been identified and used for the wavelength calibration, and most of the line radiation is contained in the He-α and the L-α lines. The experimental results have demonstrated that the spectral resolution approximates 379.
基金supported by the Shanghai Municipality Natural Science Foundation (No.09ZR1431200)the Shanghai Municipality Education Committee Foundation (Nos.10YZ182 and 09ZZ196)the Shanghai Leading Academic Discipline Project (No.J51504)
文摘Nanometer sized lead molybdate (PbMoO4) plates are prepared through conventional hydrothermal together with sonochemical methods. The plates are then characterized using field-emission scanning electron microscopy, X-ray diffractometry, Fourier transform infrared (FTIR) spectrometry, photoluminescence spectrometry, and ultraviolet-visible (UV-VIS) spectrometry. The results indicate that the nanoplates have a characteristically narrow particle size distribution and their tetragonal scheelite-type structure is confirmed by both X-ray diffractometry and FTIR spectrometry. When the nanoplates are compared with the corresponding bulk crystals, blue shifts in their photoluminescence peaks, wider optical band gaps, and the broadening of the X-ray diffractometer peaks are observed. These can be ascribed to the decrease in crystal size.