Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-r...Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.展开更多
X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of sample...X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2016-208 and lzujbky-2016-32)
文摘Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB825800)the Science Fund for Creative Research Groups,China(Grant No.11321503)+1 种基金the National Natural Science Foundation of China(Grant Nos.11179004,10979055,11205189,and 11205157)the Japan–Asia Youth Exchange Program in Science(SAKURA Exchange Program in Science)Administered by the Japan Science and Technology Agency
文摘X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.