The inhibiting effect of ciprofloxacin,norfloxacin and ofloxacin on the corrosion of mild steel in 1 mol·L-1 HCl and the mechanism were studied at different temperatures using mass loss measurement,electrochemica...The inhibiting effect of ciprofloxacin,norfloxacin and ofloxacin on the corrosion of mild steel in 1 mol·L-1 HCl and the mechanism were studied at different temperatures using mass loss measurement,electrochemical method,and X-ray photoelectron spectroscopy(XPS) .Effective inhibition was shown by mass loss,potentiodynamic polarization and impedance spectroscopy measurement.The corrosion rate of the metal in the mass loss measurement,and the corrosion reaction on cathode and anode in the electrochemical measurement were accelerated when temperature was increased.XPS results showed that the inhibitors adsorbed effectively on the metal surface.展开更多
The surface and interface electronic states of tris (8 hydroxyquinoline) aluminum (Alq 3)/indium tin oxide (ITO) were measured and analyzed by X ray photoelectron spectroscopy (XPS). The results indicated that, in Alq...The surface and interface electronic states of tris (8 hydroxyquinoline) aluminum (Alq 3)/indium tin oxide (ITO) were measured and analyzed by X ray photoelectron spectroscopy (XPS). The results indicated that, in Alq 3 molecule, the binding energy ( E b) of Al atoms is 70.7 eV and 75.1 eV, corresponding to Al(O) and Al(Ⅲ), respectively; The binding energy of C is 285.8 eV, 286.3 eV, and 286.8 eV, corresponding to C of C-C group, C-O, and C-N bond, respectively. N is the main peak locating at 401.0 eV, corresponding to N atom of C-N=C. O atoms mainly bond to H atom, with the binding energy of 533.2 eV. As the sputtering time of Ar + ion beam increases, Al 2p , C 1s , N 1s , O 1s , In 3d 5/2 and Sn 3d 5/2 peaks slightly shift towards lower binding energy, and Al 2p , C 1s and N 1s peaks get weaker, which contributes to diffusing the oxygen, indium and tin in ITO into Alq 3 layer.展开更多
Low temperature fuel cells are an attractive technology for transportation and residential applica-tions due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts...Low temperature fuel cells are an attractive technology for transportation and residential applica-tions due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. The preparation process influences the performance of the nanocatalyst. Several synthesis methods are covered for noble and non-noble metal catalysts on various catalyst supports including carbon nanotubes, carbon nanofibers, nanowires, and graphenes. Ex situ and in situ characterization methods like scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and fuel cell testing of the nanocatalysts on various supports for both proton exchange and alkaline membrane fuel cells are discussed. The accelerated durability estimate of the nanocat-alysts, predicted by measuring changes in the electrochemically active surface area using a voltage cycling method, is considered one of the most reliable and valuable method for establishing durabil-ity.展开更多
A Pd-isatin Schiff base complex immobilized on γ-Fe2O3(Pd-isatin Schiff base-γ-Fe2O3) was synthe-sized and characterized by Fourier transform infrared, scanning electron microscopy, high resolu-tion transmission ele...A Pd-isatin Schiff base complex immobilized on γ-Fe2O3(Pd-isatin Schiff base-γ-Fe2O3) was synthe-sized and characterized by Fourier transform infrared, scanning electron microscopy, high resolu-tion transmission electron microscopy, X-ray diffraction, thermogravimetric gravimetric analysis,inductively-coupled plasma, X-ray photoelectron spectroscopy, and elemental analysis. It was used as a magnetically reusable Pd catalyst for the Heck and Suzuki cross-coupling reactions.展开更多
基金Supported by the National Science & Technology Pillar Program(082603101c) China Postdoctoral Science Foundation (O92623101H)+2 种基金 Shandong Postdoctoral Foundation(200902040) Open Project Program of Marine Corrosion and Protection Research Center of Institute of Oceanology Chinese Academy of Science(200901005) Doctor Foundation of University of Jinan(XBS0899)
文摘The inhibiting effect of ciprofloxacin,norfloxacin and ofloxacin on the corrosion of mild steel in 1 mol·L-1 HCl and the mechanism were studied at different temperatures using mass loss measurement,electrochemical method,and X-ray photoelectron spectroscopy(XPS) .Effective inhibition was shown by mass loss,potentiodynamic polarization and impedance spectroscopy measurement.The corrosion rate of the metal in the mass loss measurement,and the corrosion reaction on cathode and anode in the electrochemical measurement were accelerated when temperature was increased.XPS results showed that the inhibitors adsorbed effectively on the metal surface.
文摘The surface and interface electronic states of tris (8 hydroxyquinoline) aluminum (Alq 3)/indium tin oxide (ITO) were measured and analyzed by X ray photoelectron spectroscopy (XPS). The results indicated that, in Alq 3 molecule, the binding energy ( E b) of Al atoms is 70.7 eV and 75.1 eV, corresponding to Al(O) and Al(Ⅲ), respectively; The binding energy of C is 285.8 eV, 286.3 eV, and 286.8 eV, corresponding to C of C-C group, C-O, and C-N bond, respectively. N is the main peak locating at 401.0 eV, corresponding to N atom of C-N=C. O atoms mainly bond to H atom, with the binding energy of 533.2 eV. As the sputtering time of Ar + ion beam increases, Al 2p , C 1s , N 1s , O 1s , In 3d 5/2 and Sn 3d 5/2 peaks slightly shift towards lower binding energy, and Al 2p , C 1s and N 1s peaks get weaker, which contributes to diffusing the oxygen, indium and tin in ITO into Alq 3 layer.
基金financial support from the Arizona State University
文摘Low temperature fuel cells are an attractive technology for transportation and residential applica-tions due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. The preparation process influences the performance of the nanocatalyst. Several synthesis methods are covered for noble and non-noble metal catalysts on various catalyst supports including carbon nanotubes, carbon nanofibers, nanowires, and graphenes. Ex situ and in situ characterization methods like scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and fuel cell testing of the nanocatalysts on various supports for both proton exchange and alkaline membrane fuel cells are discussed. The accelerated durability estimate of the nanocat-alysts, predicted by measuring changes in the electrochemically active surface area using a voltage cycling method, is considered one of the most reliable and valuable method for establishing durabil-ity.
基金Financial support of this project by the Iran National Science Foundation (INSF)University of Birjand Research Council is appreciated
文摘A Pd-isatin Schiff base complex immobilized on γ-Fe2O3(Pd-isatin Schiff base-γ-Fe2O3) was synthe-sized and characterized by Fourier transform infrared, scanning electron microscopy, high resolu-tion transmission electron microscopy, X-ray diffraction, thermogravimetric gravimetric analysis,inductively-coupled plasma, X-ray photoelectron spectroscopy, and elemental analysis. It was used as a magnetically reusable Pd catalyst for the Heck and Suzuki cross-coupling reactions.