Determination of chemical elements assay plays an important role in mineral processing operations.This factor is used to control process accuracy,recovery calculation and plant profitability.The new assaying methods i...Determination of chemical elements assay plays an important role in mineral processing operations.This factor is used to control process accuracy,recovery calculation and plant profitability.The new assaying methods including chemical methods,X-ray fluorescence and atomic absorption spectrometry are advanced and accurate.However,in some applications,such as on-line assaying process,high accuracy is required.In this paper,an algorithm based on Kalman Filter is presented to predict on-line XRF errors.This research has been carried out on the basis of based the industrial real data collection for evaluating the performance of the presented algorithm.The measurements and analysis for this study were conducted at the Sarcheshmeh Copper Concentrator Plant located in Iran.The quality of the obtained results was very satisfied;so that the RMS errors of prediction obtained for Cu and Mo grade assaying errors in rougher feed were less than 0.039 and 0.002 and in final flotation concentration less than 0.58 and 0.074,respectively.The results indicate that the mentioned method is quite accurate to reduce the on-line XRF errors measurement.展开更多
This study focused on the performance of where elements analysing techniques were used to detect the elements in granite stones. These techniques are NAA (neutron activation analysis) and XRF (X-ray fluorescence)....This study focused on the performance of where elements analysing techniques were used to detect the elements in granite stones. These techniques are NAA (neutron activation analysis) and XRF (X-ray fluorescence). They were applied to detect the elements in samples which had been chosen from different areas of Pulua Penang in Malaysia collected by geophysics group which helped to describe and identify the elements found in the granite stone that were used in the study procedures to control the analytical results. The integration of both methods has enabled the researcher to determine 40 elements in the samples. The numbers of elements detected by XRF analysis method are 12 elements (Ar, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn); while, the elements detected by NAA method have three folds of elements with XRF analysis method were 35 elements (Na, AI, Si, K, Ca, Sc,Ti, Mn, Fe, Co, Ga, Ce, As, Br, Rb, Zr, Sb, I, Cs, Ba, La, Nd, Sm, Eu,Tb, Dy, Yb, Lu, Hf, Ta, W, Au, Pa and Np). Seven common elements were detected in both techniques: K, Sc, Ti, V, Mn, Fe and Co. Si has a higher concentration in NAA technique which is 331.8 ppm. Sc has a lower concentration in XRF technique which is 0.25 ppm. Nd has a lower concentration in NAA technique which is 3.09 - 10-5 ppm. Finally, it is found that the NAA is better to detect the elements than XRF.展开更多
Plutonic and volcanic rocks were analyzed by INAA (Instrumental Neutron Activation Analysis) ana XRF (X-ray flurescence) in their major components for its classification. The samples proceed from the sites/regions...Plutonic and volcanic rocks were analyzed by INAA (Instrumental Neutron Activation Analysis) ana XRF (X-ray flurescence) in their major components for its classification. The samples proceed from the sites/regions corresponding to the Precambrian to Paleozoic/Postpaleozoic magmatism in the eastern and western Paraguay. The analysed elements were Si, A1, Na and K and thus the SiO2, AI/O3, Na2O and K2O content determined. The activation were performed in an annular 25Ci Am-Be neutron source with total flux of 5×10^7n.s^-1. The reactions used were (1) ^28Si (n, p) ^27A1, (2) ^27A1 (n, p) ^27Mg; (3) ^23Na (n, γ) ^24Na, the fourth element of interest, potassium, was analysed by XRF. The procedure overall uncertainties were checked as per the analysis of three compositae samples of SiO2: + A12O3 + NaHCO3 + K2CO3 prepared as standards in convenient proportions. The determination of these parameters according to the last recommendations of the IUGS (International Union of Geosciences), permits the classification of the rocks in the categories acid, intermediate, basic and ultrabasie, as well as the identification of the rock family and in certain cases, the norm and their magmatic provenance.展开更多
X-ray microanalysis was used to study the elemental composition of the shell of the freshwater testate amoeba Difflugia tuberspinifera Hu et al.,1997 collected from Mulan Lake,Hubei province,China in July 2003.The res...X-ray microanalysis was used to study the elemental composition of the shell of the freshwater testate amoeba Difflugia tuberspinifera Hu et al.,1997 collected from Mulan Lake,Hubei province,China in July 2003.The results show that the shell is composed of ten elements:Si in greater quantity;then Ca and Al;and traces of K,Na,Cl,Fe,Mg,S and P.The analysis of results suggests that D.tuberspinifera in elemental composition appears to occupy a middle position between marine and soil testate amoebae.展开更多
A new FeSe-based superconductor (C2H8N2)x FeSe with ethylenediamine intercalated into FeSe was suc- cessfully synthesized by the solvothermal method, which is the first superconducting instance by metal-free organic...A new FeSe-based superconductor (C2H8N2)x FeSe with ethylenediamine intercalated into FeSe was suc- cessfully synthesized by the solvothermal method, which is the first superconducting instance by metal-free organic molecule intercalation. Elemental analysis and TG-IR-GC/MS data re- veal that the ethylenediamine molecules in the interlayer space are separate and intact. The X-ray diffraction (XRD) pattern indicates that the intercalation compound is an orthorhombic lattice rather than a tetragonal lattice applying to almost all the previous FeSe-based superconductors at room tempera- ture. The magnetism measurements display a sharp super- conducting transition at -10 K which is assigned to (C2H8N2)xFeSe, and a tiny drop in susceptibility at -30 K.展开更多
A wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry combined with calibration curve method was estab- lished for simultaneously analyzing low-Z elements (C, N, O) and A1, Si, Fe in polyamide. To inves...A wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry combined with calibration curve method was estab- lished for simultaneously analyzing low-Z elements (C, N, O) and A1, Si, Fe in polyamide. To investigate the origin of plastic material causing deposition and blocking in instrument engines and pipelines, polyamide 6 (PA 6, an engineering plastic) was chosen as the study object on account of its common use in industry. The sample preparation with pressed powder disk has been developed for determination of six elements in PA 6. Pure Cu metal was used as the matrix and PA 6 was regarded as standard sample for C, N, O elements. PA 6 particles were firstly smashed to uniform powder in liquid nitrogen, and then mixed with inorganic standard powders (Fe203, A1203, SIO2, and Na2SiO3). The mixture was ground to obtain homogeneous calibration materials for WD-XRF analysis. The quantitative property of the calibration curve method for each element was re- liable. The limits of detection (S/N≤3) of C, N, O, A1, Si and Fe using WD-XRF were 249, 120, 101, 6.2, 3.3, and 1.8 μg/g, respectively. To confirm the accuracy of the proposed WD-XRF calibration curve method, inductively coupled plasma optical emission spectroscopy (ICP-OES) detection for A1, Si, Fe and elemental analyzer (EA) analysis for C, N, O were utilized. A good correlation of the WD-XRF results with the measurements of ICP-OES and EA was observed.展开更多
基金the support of the Department of Research and Development of Sarcheshmeh Copper Plants for this research
文摘Determination of chemical elements assay plays an important role in mineral processing operations.This factor is used to control process accuracy,recovery calculation and plant profitability.The new assaying methods including chemical methods,X-ray fluorescence and atomic absorption spectrometry are advanced and accurate.However,in some applications,such as on-line assaying process,high accuracy is required.In this paper,an algorithm based on Kalman Filter is presented to predict on-line XRF errors.This research has been carried out on the basis of based the industrial real data collection for evaluating the performance of the presented algorithm.The measurements and analysis for this study were conducted at the Sarcheshmeh Copper Concentrator Plant located in Iran.The quality of the obtained results was very satisfied;so that the RMS errors of prediction obtained for Cu and Mo grade assaying errors in rougher feed were less than 0.039 and 0.002 and in final flotation concentration less than 0.58 and 0.074,respectively.The results indicate that the mentioned method is quite accurate to reduce the on-line XRF errors measurement.
文摘This study focused on the performance of where elements analysing techniques were used to detect the elements in granite stones. These techniques are NAA (neutron activation analysis) and XRF (X-ray fluorescence). They were applied to detect the elements in samples which had been chosen from different areas of Pulua Penang in Malaysia collected by geophysics group which helped to describe and identify the elements found in the granite stone that were used in the study procedures to control the analytical results. The integration of both methods has enabled the researcher to determine 40 elements in the samples. The numbers of elements detected by XRF analysis method are 12 elements (Ar, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn); while, the elements detected by NAA method have three folds of elements with XRF analysis method were 35 elements (Na, AI, Si, K, Ca, Sc,Ti, Mn, Fe, Co, Ga, Ce, As, Br, Rb, Zr, Sb, I, Cs, Ba, La, Nd, Sm, Eu,Tb, Dy, Yb, Lu, Hf, Ta, W, Au, Pa and Np). Seven common elements were detected in both techniques: K, Sc, Ti, V, Mn, Fe and Co. Si has a higher concentration in NAA technique which is 331.8 ppm. Sc has a lower concentration in XRF technique which is 0.25 ppm. Nd has a lower concentration in NAA technique which is 3.09 - 10-5 ppm. Finally, it is found that the NAA is better to detect the elements than XRF.
文摘Plutonic and volcanic rocks were analyzed by INAA (Instrumental Neutron Activation Analysis) ana XRF (X-ray flurescence) in their major components for its classification. The samples proceed from the sites/regions corresponding to the Precambrian to Paleozoic/Postpaleozoic magmatism in the eastern and western Paraguay. The analysed elements were Si, A1, Na and K and thus the SiO2, AI/O3, Na2O and K2O content determined. The activation were performed in an annular 25Ci Am-Be neutron source with total flux of 5×10^7n.s^-1. The reactions used were (1) ^28Si (n, p) ^27A1, (2) ^27A1 (n, p) ^27Mg; (3) ^23Na (n, γ) ^24Na, the fourth element of interest, potassium, was analysed by XRF. The procedure overall uncertainties were checked as per the analysis of three compositae samples of SiO2: + A12O3 + NaHCO3 + K2CO3 prepared as standards in convenient proportions. The determination of these parameters according to the last recommendations of the IUGS (International Union of Geosciences), permits the classification of the rocks in the categories acid, intermediate, basic and ultrabasie, as well as the identification of the rock family and in certain cases, the norm and their magmatic provenance.
文摘X-ray microanalysis was used to study the elemental composition of the shell of the freshwater testate amoeba Difflugia tuberspinifera Hu et al.,1997 collected from Mulan Lake,Hubei province,China in July 2003.The results show that the shell is composed of ten elements:Si in greater quantity;then Ca and Al;and traces of K,Na,Cl,Fe,Mg,S and P.The analysis of results suggests that D.tuberspinifera in elemental composition appears to occupy a middle position between marine and soil testate amoebae.
基金supported by the National Natural Science Foundation of China (21671182)
文摘A new FeSe-based superconductor (C2H8N2)x FeSe with ethylenediamine intercalated into FeSe was suc- cessfully synthesized by the solvothermal method, which is the first superconducting instance by metal-free organic molecule intercalation. Elemental analysis and TG-IR-GC/MS data re- veal that the ethylenediamine molecules in the interlayer space are separate and intact. The X-ray diffraction (XRD) pattern indicates that the intercalation compound is an orthorhombic lattice rather than a tetragonal lattice applying to almost all the previous FeSe-based superconductors at room tempera- ture. The magnetism measurements display a sharp super- conducting transition at -10 K which is assigned to (C2H8N2)xFeSe, and a tiny drop in susceptibility at -30 K.
基金supported by the Research Fund for the Doctoral Program of Higher Education (20110002110052)
文摘A wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry combined with calibration curve method was estab- lished for simultaneously analyzing low-Z elements (C, N, O) and A1, Si, Fe in polyamide. To investigate the origin of plastic material causing deposition and blocking in instrument engines and pipelines, polyamide 6 (PA 6, an engineering plastic) was chosen as the study object on account of its common use in industry. The sample preparation with pressed powder disk has been developed for determination of six elements in PA 6. Pure Cu metal was used as the matrix and PA 6 was regarded as standard sample for C, N, O elements. PA 6 particles were firstly smashed to uniform powder in liquid nitrogen, and then mixed with inorganic standard powders (Fe203, A1203, SIO2, and Na2SiO3). The mixture was ground to obtain homogeneous calibration materials for WD-XRF analysis. The quantitative property of the calibration curve method for each element was re- liable. The limits of detection (S/N≤3) of C, N, O, A1, Si and Fe using WD-XRF were 249, 120, 101, 6.2, 3.3, and 1.8 μg/g, respectively. To confirm the accuracy of the proposed WD-XRF calibration curve method, inductively coupled plasma optical emission spectroscopy (ICP-OES) detection for A1, Si, Fe and elemental analyzer (EA) analysis for C, N, O were utilized. A good correlation of the WD-XRF results with the measurements of ICP-OES and EA was observed.