The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combi...The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combined with experimental results of proximate analysis, ultimate analysis, Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS), a structural model for the large molecular structure was constructed. By analyzing the bond lengths in the model molecule, the evolution law for the active structure of lignite was predicted for the process of low-temperature oxidation. In low-temperature oxidation,alkanes and hydroxyls are the primary active structures observed in lignite, though ether may also react. These active functional groups react with oxygen to release heat, thereby speeding up the reaction between coal and oxygen. Finally, the content of various functional groups in the process of lignite low-temperature oxidation was analyzed by infrared analysis, and the accuracy of the model was verified.展开更多
In order to evaluate the role of vanadium in the hydrogenation (HYD) reaction, a series of alumina supported vanadium catalysts were prepared and characterized by SEM, XRD, Raman spectrometry, 51V NMR, XPS, as well as...In order to evaluate the role of vanadium in the hydrogenation (HYD) reaction, a series of alumina supported vanadium catalysts were prepared and characterized by SEM, XRD, Raman spectrometry, 51V NMR, XPS, as well as TPR analyses. The catalytic performance of vanadium in HYD of model molecules (naphthalene) and real feedstock (Kuwait atmospheric residue) was studied after sulfidation of the catalysts. It can be concluded that the HYD capabilities of V/Al2O3 catalysts are lower than that of conventional NiMo/Al2O3 catalyst (RefNiMo). The V/Al2O3 catalysts can only facilitate hydrogenation of the first ring of naphthalene, but have little effect on the further hydrogenation of tetralin. Owing to the different forms of metals and sulfur compounds in residue, the weak HYD activity of V/Al2O3 catalysts is able to facilitate the HDM reaction of the residue, albeit with a slight effect on HDS activity.展开更多
The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by...The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications.展开更多
The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange mem...The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.展开更多
The physical characteristics and microstructure of the fluoride film formed during activation were investigated using SEM,XPS and SAM,and its stability in electroless nickel(EN) bath was analyzed.The effects of the fl...The physical characteristics and microstructure of the fluoride film formed during activation were investigated using SEM,XPS and SAM,and its stability in electroless nickel(EN) bath was analyzed.The effects of the fluoride film on EN deposition were studied additionally.The results show that the fluoride film on magnesium alloys is a kind of porous film composed of MgF2 with thickness of 1.6-3.2 μm.The composition of the activation bath and pretreatment of EN processing have influence on the composition of the fluoride film.The fluoride is stable and dissolves little in EN bath;as a result,the fluoride film can protect magnesium substrate from the corrosion of EN bath.The composition of fluoride determines the initial deposition of EN and part of the fluoride film finally exists as inclusion in EN coating.展开更多
The effects of sintering atmosphere on the properties of symmetric TiO2 membranes are studied with regard to sintering behavior, porosity, mean pore size, surface comPosition. and surface charge properties. The exerim...The effects of sintering atmosphere on the properties of symmetric TiO2 membranes are studied with regard to sintering behavior, porosity, mean pore size, surface comPosition. and surface charge properties. The exerimental results show that the symmetric TiO2 membranes display better sintering activity in the air than in argon, and the mean pore diameters and porosities of the membrane sintered in argon are higher than those of the membrane sintered in the air at the same temperature. The surface compositions of the symmetric TiO2 membrane sintered in the air and in argon at different temperatures, as studied by X-ray photoelectron spectroscopy, are discussed in terms of their chemical composition, with particular emphasis on the valence state of the titanium ions. The correlation between the valence state of the titanium ions at the surface and the surface charge properties is examined.It is found that the presence of Ti^3+, introduced at the surface of the symmetric TiO2 membranes by sintering in a lower partial pressure of oxygen, is related to a significant decrease in the isoelectric point. TiO2 with Ti^4+ at the interface has an isoelectric point of 5.1, but the non-stoichiometric TiO2-x with Ti^3+ at the interface has a lower isoelectric point of 3.6.展开更多
The interfacial compatibility of composite membrane is an important factor to its structural stability, andseparation performance. In this study, poly (ether sulfone) (PES) support layer was first hydrophilically ...The interfacial compatibility of composite membrane is an important factor to its structural stability, andseparation performance. In this study, poly (ether sulfone) (PES) support layer was first hydrophilically modified with poly(vinyl alcohol) (PVA) via surface segregation during the phase inversion process. Gelatin (GE) was then cast on the PVA-modified PES support layer as the active layer followed by crosslinking to fabricate composite membranes for ethanol dehydration. The enrichment of PVA on the surface of support layer improved interfacial compatibility of the as-prepared GE/PVA-PES composite membrane. The water contact angle measurement and X-ray photoelectron spectroscopy (XPS) data confirmed the surface segregation of PVA with a surface coverage density of -80%. T-peel test showed that the maxima/force to separate the support layer and the active layer was enhanced by 3 times compared with the GE/PES membrane. The effects of PVA content in the support layer, crosslinking of GE active layer and operating parameters on the pervaporative dehydration performance were investigated. The operational stability of the composite membrane was tested by immersing the membrane in ethanol aqueous solution for a period of time. Stable pervaporation performance for dehydration of 90% ethanol solution was obtained for GE/PVA-PES membrane with a separation factor of -60 and a permeation flux of -1910 g.m^-2.h1 without peeling over 28 days immersion.展开更多
The paper presents a study of the growth and characterization of carbon nanotube-rutile nanocomposites. The heterostructures were obtained with a chemical mixing method. Scanning electron microscope images show that t...The paper presents a study of the growth and characterization of carbon nanotube-rutile nanocomposites. The heterostructures were obtained with a chemical mixing method. Scanning electron microscope images show that the samples appear as a homogeneous powder of rutile with carbon nanotubes intercalated in interspaces between the TiO2 grains. Characterization by both X-ray photoelectron spectroscopy and cathodo-luminescence analysis show the formation of CO-Ti chemical bonds with a decrease of 0.8 eV in the band gap compared to pure rutile. The consequence of this band gap modification is a strong change in optical properties. Luminescence emission is drastically reduced and absorption in the visible range is increased of about 6% at very low concentration (1%) of carbon nanotubes.展开更多
The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies ...The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.展开更多
Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on...Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.展开更多
Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reductio...Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.展开更多
We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphol...We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphology, structure, composition of the product have been inves- tigated with the X-ray photoelectron spectrum, scanning electron microscope, transmission electron microscope, and energy-dispersive spectroscopy. Tile overall morphologies could be controlled to shift from a characteristic network of flower-like silica sphere to a sheet-like structure by adjusting physical adsorption of different amount of polyethyleneimine onto the surface of the CaCO3 microparticles.展开更多
The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and proper...The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and properties of treated fibers were investigated by means of SEM,XPS,single fiber tensile tester and so on.The results proved that the effects of plasma treatments depended on structural characteristics of fibers to a great extent,besides conditions of plasma treatment.By atmospheric pressure plasma treatment,wool fiber had significant changes in morphology structure,surface chemical component,mechanic properties and dyeability,while ramie fiber just showed a little change.In additional,Ar/O2 plasma showed more effective action than argon.And at the beginning of treatment,plasma brought about remarkable effects,which did not increase with prolonging of treat time.展开更多
In order to improve the surface hydrophobicity, silicone rubber (SIR) samples were exposed to CF4 radio frequency (RF) capacitively coupled plasma (CCP). Attenuated total reflection Fourier transform infrared (...In order to improve the surface hydrophobicity, silicone rubber (SIR) samples were exposed to CF4 radio frequency (RF) capacitively coupled plasma (CCP). Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrum and X-ray photoelectron spectroscopy (XPS) were used to observe the variation of the functional groups of the modified SIR. Static contact angle (SCA) was employed to estimate the change of hydrophobicity of the modified SIR. The surface energy of SIR is reduced largely from 27.37 mJ/m^2 of original SIR sample to 2.94 mJ/m^2 of SIR sample treated by CF4 CCP modification at RF power of 200 W for a treatment time of 5 rnin. According to the XPS, ATR-FTIR and surface energy analysis, it is suggested that the improvement of hydrophobicity on the modified SIR surface is mainly ascribed to the decrease of surface energy, which is caused by the cooperation of the fluosilicic structure of Si--F or Si--F2 and the fluoric groups of C--CFn induced by the methyl replacement reaction and residual methyl groups of SIR surface.展开更多
Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized b...Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffractometry(XRD) and energy dispersive X-ray micro analysis(EDS) techniques.The XPS results showed that there was only Au0 on the surface of catalysts.The XRD patterns showed that Au was presumably highly dispersed over γ-Al2O3.The temperatures for complete conversion of methanol,ethanol,iso-propanol and n-propanol with concentration of 2.0 g/m3 were 60,155,170 and 137 ℃,respectively,but they were completely mineralized into CO2 and H2O at 60,220,260 and 217 ℃ respectively over the optimized catalyst.The activity of the catalyst was stable in 130 h.The kinetics for the catalytic methanol elimination followed quasi-first order reaction expressed as r=0.652 8c0+0.084 2.The value of apparent activation energy is 54.7 kJ/mol in the range of reaction temperature.展开更多
Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell na...Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell nanothorns (CSNTs) with rough and porous surfaces were synthesized for the first time through a facile co-chemical reduction method in the presence of polyallylamine hydrochloride (PAH) and ethylene glycol (EG) at room temperature. The size, morphology, and composition of Au@Pd CSNTs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spec- troscopy (EDX), EDX mapping, and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of as-synthesized Au@Pd CSNTs were also studied by various electrochemical techniques. Au@Pd CSNTs exhibited remarkably high electrocatalytic activity and durability for the oxygen reduction reaction (ORR) in the alkaline media, owing to the unique porous structure and the synergistic effect between the Au core and Pd shell.展开更多
A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characteriza...A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that PtgFe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a PtBFe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst.展开更多
Alloy nanocrystals (NCs) of Pt with 3d transition metals, especially Ni, are excellent catalysts for the oxygen reduction reaction (ORR). In this work, we, for the first time, demonstrated the water phase colloida...Alloy nanocrystals (NCs) of Pt with 3d transition metals, especially Ni, are excellent catalysts for the oxygen reduction reaction (ORR). In this work, we, for the first time, demonstrated the water phase colloidal synthesis of Pt-M (M = Ni, Co and Fe) alloy NCs with tunable composition and morphology through a facile hydrothermal method. Pt-Ni alloy NCs synthesized with this method presented better ORR activity than commercial Pt/C catalysts. The X-ray energy dispersive spectra (EDS) mapping technique revealed that Pt-enriched shells existed on the as-synthesized Pt-Ni alloy NCs. About two atom thick layered Pt-enriched shells formed on Pts0Nis0 NCs and the thickness of the Pt-enriched shells increased as the Ni content increased. Furthermore, X-ray photoelectron spectroscopy analysis revealed that the oxidation level of the surface Pt atoms on the Pt-Ni alloy NCs decreased compared with monometallic Pt NCs, implying a decrease in the oxophilicity of the surface Pt atoms. Pt-Ni alloy NCs with lower oxophilicity of the surface Pt atoms give higher ORR activity. The most active alloy sample showed 13 times higher specific activity and six times higher mass activity at 0.9 V vs. a reversible hydrogen electrode when compared with commercial Pt/C. Pt-Ni alloy NCs also showed better durability than commercial Pt/C in long term ORR tests.展开更多
PdPt bimetallic catalysts that employ CeO2-modified carbon black as a support have been prepared using an organic colloidal method. PdPt/CeO2-C shows excellent performance toward the anodic oxidation of formic acid. T...PdPt bimetallic catalysts that employ CeO2-modified carbon black as a support have been prepared using an organic colloidal method. PdPt/CeO2-C shows excellent performance toward the anodic oxidation of formic acid. The effects of varying both Pd to Pt ratio and CeO2 content have been investigated. The optimal Pd to Pt atomic ratio is 15, indicating that addition of small amounts of Pt can significantly enhance the activity of the catalyst. When the CeO2 content in the catalyst reaches as high as ~15 wt.%, the catalyst shows the maximum activity. Adding CeO2 not only enhances the catalytic activity of the material, but may also change the mechanism of its catalysis of the anodic oxidation of formic acid. PdlsPh/15CeO2-C exhibited 60% higher activity than Pd/C, and had a negative shift in onset potential of more than 0.1 V. Based on characterization by X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and transmission electron microscopy, the interactions between the components are revealed and discussed in detail.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(2017XKQY066)
文摘The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combined with experimental results of proximate analysis, ultimate analysis, Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS), a structural model for the large molecular structure was constructed. By analyzing the bond lengths in the model molecule, the evolution law for the active structure of lignite was predicted for the process of low-temperature oxidation. In low-temperature oxidation,alkanes and hydroxyls are the primary active structures observed in lignite, though ether may also react. These active functional groups react with oxygen to release heat, thereby speeding up the reaction between coal and oxygen. Finally, the content of various functional groups in the process of lignite low-temperature oxidation was analyzed by infrared analysis, and the accuracy of the model was verified.
基金supported by the National Basic Research Program of China(973 Program No.2012CB224802)
文摘In order to evaluate the role of vanadium in the hydrogenation (HYD) reaction, a series of alumina supported vanadium catalysts were prepared and characterized by SEM, XRD, Raman spectrometry, 51V NMR, XPS, as well as TPR analyses. The catalytic performance of vanadium in HYD of model molecules (naphthalene) and real feedstock (Kuwait atmospheric residue) was studied after sulfidation of the catalysts. It can be concluded that the HYD capabilities of V/Al2O3 catalysts are lower than that of conventional NiMo/Al2O3 catalyst (RefNiMo). The V/Al2O3 catalysts can only facilitate hydrogenation of the first ring of naphthalene, but have little effect on the further hydrogenation of tetralin. Owing to the different forms of metals and sulfur compounds in residue, the weak HYD activity of V/Al2O3 catalysts is able to facilitate the HDM reaction of the residue, albeit with a slight effect on HDS activity.
基金Project(2010CB227103) supported by the National Basic Research Program of ChinaProjects(50930007,50836005) supported by the Key Program of the National Natural Science Foundation of ChinaProject(U1034005) supported by the National Natural Science Foundation of China
文摘The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications.
基金Project(51272289) supported by the National Natural Science Foundation of China
文摘The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.
基金Project(50101007) supported by the National Science Natural Foundation of China
文摘The physical characteristics and microstructure of the fluoride film formed during activation were investigated using SEM,XPS and SAM,and its stability in electroless nickel(EN) bath was analyzed.The effects of the fluoride film on EN deposition were studied additionally.The results show that the fluoride film on magnesium alloys is a kind of porous film composed of MgF2 with thickness of 1.6-3.2 μm.The composition of the activation bath and pretreatment of EN processing have influence on the composition of the fluoride film.The fluoride is stable and dissolves little in EN bath;as a result,the fluoride film can protect magnesium substrate from the corrosion of EN bath.The composition of fluoride determines the initial deposition of EN and part of the fluoride film finally exists as inclusion in EN coating.
基金Supported by the National-Basic Research Program of China (2003CB615707) and the National Natural Science Foundation of China (20636020).
文摘The effects of sintering atmosphere on the properties of symmetric TiO2 membranes are studied with regard to sintering behavior, porosity, mean pore size, surface comPosition. and surface charge properties. The exerimental results show that the symmetric TiO2 membranes display better sintering activity in the air than in argon, and the mean pore diameters and porosities of the membrane sintered in argon are higher than those of the membrane sintered in the air at the same temperature. The surface compositions of the symmetric TiO2 membrane sintered in the air and in argon at different temperatures, as studied by X-ray photoelectron spectroscopy, are discussed in terms of their chemical composition, with particular emphasis on the valence state of the titanium ions. The correlation between the valence state of the titanium ions at the surface and the surface charge properties is examined.It is found that the presence of Ti^3+, introduced at the surface of the symmetric TiO2 membranes by sintering in a lower partial pressure of oxygen, is related to a significant decrease in the isoelectric point. TiO2 with Ti^4+ at the interface has an isoelectric point of 5.1, but the non-stoichiometric TiO2-x with Ti^3+ at the interface has a lower isoelectric point of 3.6.
基金Supported by the New Century Excellent Talents in University(NCET-10-0623)National Natural Science Foundation for Distinguished Young Scholars(21125627)+1 种基金National Basic Research Program of China(2009CB623404)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials(Dong Hua University)
文摘The interfacial compatibility of composite membrane is an important factor to its structural stability, andseparation performance. In this study, poly (ether sulfone) (PES) support layer was first hydrophilically modified with poly(vinyl alcohol) (PVA) via surface segregation during the phase inversion process. Gelatin (GE) was then cast on the PVA-modified PES support layer as the active layer followed by crosslinking to fabricate composite membranes for ethanol dehydration. The enrichment of PVA on the surface of support layer improved interfacial compatibility of the as-prepared GE/PVA-PES composite membrane. The water contact angle measurement and X-ray photoelectron spectroscopy (XPS) data confirmed the surface segregation of PVA with a surface coverage density of -80%. T-peel test showed that the maxima/force to separate the support layer and the active layer was enhanced by 3 times compared with the GE/PES membrane. The effects of PVA content in the support layer, crosslinking of GE active layer and operating parameters on the pervaporative dehydration performance were investigated. The operational stability of the composite membrane was tested by immersing the membrane in ethanol aqueous solution for a period of time. Stable pervaporation performance for dehydration of 90% ethanol solution was obtained for GE/PVA-PES membrane with a separation factor of -60 and a permeation flux of -1910 g.m^-2.h1 without peeling over 28 days immersion.
文摘The paper presents a study of the growth and characterization of carbon nanotube-rutile nanocomposites. The heterostructures were obtained with a chemical mixing method. Scanning electron microscope images show that the samples appear as a homogeneous powder of rutile with carbon nanotubes intercalated in interspaces between the TiO2 grains. Characterization by both X-ray photoelectron spectroscopy and cathodo-luminescence analysis show the formation of CO-Ti chemical bonds with a decrease of 0.8 eV in the band gap compared to pure rutile. The consequence of this band gap modification is a strong change in optical properties. Luminescence emission is drastically reduced and absorption in the visible range is increased of about 6% at very low concentration (1%) of carbon nanotubes.
基金the financial support from National Natural Science Foundation of China(project No.50975282)Chongqing Science Foundation for Outstanding Youth(project No. CSTC2008,BA4037)
文摘The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.
基金the High Technology Research and Development Program of China(No.2011AA060803)the Beijing Key Laboratory Annual Program(No.Z121103009212039)
文摘Surface chemical properties of typical commercial coal-based activated cokes were characterized by Xray photoelectron spectroscopy(XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 ℃. The results indicate that the selective catalytic reduction(SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content,obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201225114)the Natural Science Foundation of Zhejiang Province (LY13B030006)
文摘Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.
文摘We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphology, structure, composition of the product have been inves- tigated with the X-ray photoelectron spectrum, scanning electron microscope, transmission electron microscope, and energy-dispersive spectroscopy. Tile overall morphologies could be controlled to shift from a characteristic network of flower-like silica sphere to a sheet-like structure by adjusting physical adsorption of different amount of polyethyleneimine onto the surface of the CaCO3 microparticles.
文摘The technique of atmospheric pressure plasma is of value in textile industry.In this paper,argon(Ar)and argon/oxygen(Ar/O2)atmospheric pressure plasma were used to treat wool and ramie fibers.The structures and properties of treated fibers were investigated by means of SEM,XPS,single fiber tensile tester and so on.The results proved that the effects of plasma treatments depended on structural characteristics of fibers to a great extent,besides conditions of plasma treatment.By atmospheric pressure plasma treatment,wool fiber had significant changes in morphology structure,surface chemical component,mechanic properties and dyeability,while ramie fiber just showed a little change.In additional,Ar/O2 plasma showed more effective action than argon.And at the beginning of treatment,plasma brought about remarkable effects,which did not increase with prolonging of treat time.
基金Project(05JT1034) supported by the Plan of Science and Technology Bureau of Hunan Province,China
文摘In order to improve the surface hydrophobicity, silicone rubber (SIR) samples were exposed to CF4 radio frequency (RF) capacitively coupled plasma (CCP). Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrum and X-ray photoelectron spectroscopy (XPS) were used to observe the variation of the functional groups of the modified SIR. Static contact angle (SCA) was employed to estimate the change of hydrophobicity of the modified SIR. The surface energy of SIR is reduced largely from 27.37 mJ/m^2 of original SIR sample to 2.94 mJ/m^2 of SIR sample treated by CF4 CCP modification at RF power of 200 W for a treatment time of 5 rnin. According to the XPS, ATR-FTIR and surface energy analysis, it is suggested that the improvement of hydrophobicity on the modified SIR surface is mainly ascribed to the decrease of surface energy, which is caused by the cooperation of the fluosilicic structure of Si--F or Si--F2 and the fluoric groups of C--CFn induced by the methyl replacement reaction and residual methyl groups of SIR surface.
基金Project supported by the Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education,China
文摘Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffractometry(XRD) and energy dispersive X-ray micro analysis(EDS) techniques.The XPS results showed that there was only Au0 on the surface of catalysts.The XRD patterns showed that Au was presumably highly dispersed over γ-Al2O3.The temperatures for complete conversion of methanol,ethanol,iso-propanol and n-propanol with concentration of 2.0 g/m3 were 60,155,170 and 137 ℃,respectively,but they were completely mineralized into CO2 and H2O at 60,220,260 and 217 ℃ respectively over the optimized catalyst.The activity of the catalyst was stable in 130 h.The kinetics for the catalytic methanol elimination followed quasi-first order reaction expressed as r=0.652 8c0+0.084 2.The value of apparent activation energy is 54.7 kJ/mol in the range of reaction temperature.
文摘Bimetallic core-shell nanostructures with porous surfaces have drawn considerable attention due to their promising applications in various fields, including catalysis and electronics. In this work, Au@Pd core-shell nanothorns (CSNTs) with rough and porous surfaces were synthesized for the first time through a facile co-chemical reduction method in the presence of polyallylamine hydrochloride (PAH) and ethylene glycol (EG) at room temperature. The size, morphology, and composition of Au@Pd CSNTs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spec- troscopy (EDX), EDX mapping, and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of as-synthesized Au@Pd CSNTs were also studied by various electrochemical techniques. Au@Pd CSNTs exhibited remarkably high electrocatalytic activity and durability for the oxygen reduction reaction (ORR) in the alkaline media, owing to the unique porous structure and the synergistic effect between the Au core and Pd shell.
基金This work was financially supported by the Ministry of Science and Technology of China (Grants 2012CB215500 and 2013CB933100) and the National Natural Science Foundation of China (Grants 21103178 and 21033009).
文摘A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that PtgFe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a PtBFe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst.
基金We thank Prof. Dechun Zou and Mr. Ming Peng for their help with electrochemical characterization. This work was supported by the National Natural Science Foundation of China (Nos. 21025101, 21271011, and 21321001). Y. W. Z. particularly appreciates the financial aid from the China National Funds for Distinguished Young Scientists from the National Natural Science Foundation of China (NSFC). The work on micros- copy was partly carried out in the Center of Electron Microscopy of Zhejiang University, which was financially supported by the National Natural Science Foundation of China (No. 51222202), the National Basic Research Program of China (No. 2014CB932500) and the Program for Innovative Research Teams in Universities of Ministry of Education of China (No. IRT13037) and the Fundamental Research Funds for the Central Universities (No. 2014XZZX003-07).
文摘Alloy nanocrystals (NCs) of Pt with 3d transition metals, especially Ni, are excellent catalysts for the oxygen reduction reaction (ORR). In this work, we, for the first time, demonstrated the water phase colloidal synthesis of Pt-M (M = Ni, Co and Fe) alloy NCs with tunable composition and morphology through a facile hydrothermal method. Pt-Ni alloy NCs synthesized with this method presented better ORR activity than commercial Pt/C catalysts. The X-ray energy dispersive spectra (EDS) mapping technique revealed that Pt-enriched shells existed on the as-synthesized Pt-Ni alloy NCs. About two atom thick layered Pt-enriched shells formed on Pts0Nis0 NCs and the thickness of the Pt-enriched shells increased as the Ni content increased. Furthermore, X-ray photoelectron spectroscopy analysis revealed that the oxidation level of the surface Pt atoms on the Pt-Ni alloy NCs decreased compared with monometallic Pt NCs, implying a decrease in the oxophilicity of the surface Pt atoms. Pt-Ni alloy NCs with lower oxophilicity of the surface Pt atoms give higher ORR activity. The most active alloy sample showed 13 times higher specific activity and six times higher mass activity at 0.9 V vs. a reversible hydrogen electrode when compared with commercial Pt/C. Pt-Ni alloy NCs also showed better durability than commercial Pt/C in long term ORR tests.
基金supported by the National Natural Science Foundation of China (20673040 and 20876062)the Ministry of Science and Technology of China (2009AA05Z119)the Guangdong Provincial Scientific Foundation (36055)
文摘PdPt bimetallic catalysts that employ CeO2-modified carbon black as a support have been prepared using an organic colloidal method. PdPt/CeO2-C shows excellent performance toward the anodic oxidation of formic acid. The effects of varying both Pd to Pt ratio and CeO2 content have been investigated. The optimal Pd to Pt atomic ratio is 15, indicating that addition of small amounts of Pt can significantly enhance the activity of the catalyst. When the CeO2 content in the catalyst reaches as high as ~15 wt.%, the catalyst shows the maximum activity. Adding CeO2 not only enhances the catalytic activity of the material, but may also change the mechanism of its catalysis of the anodic oxidation of formic acid. PdlsPh/15CeO2-C exhibited 60% higher activity than Pd/C, and had a negative shift in onset potential of more than 0.1 V. Based on characterization by X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and transmission electron microscopy, the interactions between the components are revealed and discussed in detail.