A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in deta...A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology.展开更多
N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the p...N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the polycrystalline nature of the deposited films.The crystalline structure is influenced by the variation of OPP.Atomic force microscopy analysis confirmed the agglomeration of the neighboring spherical grains with a sharp increase of root mean square(RMS)roughness when the OPP is increased above 1.4×10-3 Pa.X-ray photoelectron spectroscopy analysis revealed that the incorporation of N content into the film is decreased with the increase of OPP,noticeably N 1s XPS peaks are hardly identified at 9.5×10-3 Pa.The average visible transmittance(380-700 nm) is increased with the increase of OPP(from~17%to 70%),and the optical absorption edge shifts towards the shorter wavelength.The films deposited with low OPP(≤3.0×10-4 Pa)show n-type conductivity and those deposited with high OPP(≥9.0×10-4 Pa)are highly resistive(>105Ω·cm)展开更多
The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) i...The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) ion adsorption onto AC-T.The modified activated carbon is characterized by scanning electron microscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5.Adsorption isotherms and kinetic study suggest that the sorption of Cd(Ⅱ) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption.And the adsorbent has a good reusability.According to the FT-IR and XPS analyses,electrostatic attraction and cation exchange between Cd(Ⅱ) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(Ⅱ) adsorption.展开更多
Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, ...Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.展开更多
The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were ...The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were designed; the existing metal precursors, such as [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species in the solutions were confirmed by laser Raman spectroscopy(LRS). The UV-Vis spectra results indicated that the solutions containing both phosphoric acid and citric acid could change the existing form of nickel species. Five corresponding Ni Mo/Al_2O_3 catalysts were prepared by the incipient wetness impregnation method. The LRS analysis results of dried catalysts showed that the above metal precursors could be partly retained on alumina support after impregnation and drying, although the interface reaction between different metal precursors and alumina support unavoidably took place. Then the catalysts were sulfided and characterized by N2 physisorption, TEM and XPS analyses. The results showed that different metal precursors in impregnating solution could mainly result in the difference in both the morphology of(Ni)Mo S2 slabs and the promoting effect of Ni species. The catalyst prepared mainly with [P2Mo5O23]^(6-)-like species used as precursors exhibited worse dispersion of(Ni)Mo S2 slabs and lower ratio of Ni–Mo–S active phases than the one with [Mo4(citrate)2O11]^(4-)-like species. Promisingly, the catalyst prepared with co-existing [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species showed better hydrodesulfurization activity for 4,6-DMDBT thanks to its more well-dispersed Ni–Mo–S active phases.展开更多
A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-di...A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-dibromobutane and pyrrolidine, and subsequent ion exchange pathway with KOH followed by neutralization reaction via HBF4 in the system of ethanol solution. 1H NMR, 13 C NMR, FI-IR and XPS analyses showed the structure of SBP-BF4. The as-obtained SBP-BF4 was dissolved in AN and used as the electrolyte for supercapacitor. Electrochemical measurements demonstrate that, compared with commercial electrolyte TEMA-BF4/AN, SBP-BF4/AN exhibits high ionic conductivity, lower resistance and improved cycling performance, which is due to its smaller ion size and stable symmetry structure.展开更多
A facile surface segregation method was utilized to fabricate poly(vinyl alcohol)-polyethersulfone (PVA-PES) composite membranes. PVA and PES were first dissolved in dimethyl sulfoxide (DMSO), then casted on a g...A facile surface segregation method was utilized to fabricate poly(vinyl alcohol)-polyethersulfone (PVA-PES) composite membranes. PVA and PES were first dissolved in dimethyl sulfoxide (DMSO), then casted on a glass plate and immersed in a coagulation bath. During the phase inversion process in coagulation bath, PVA spontaneously segregated to the polymer solution/coagulation bath interface. The enriched PVA on the surface was further crosslinked by glutaraldehyde. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometer (EDS) confirmed the integral and asymmetric membrane structure with a dense PVA-enriched surface and a porous PES-enriched support, as well as the surface enrichment of PVA. The coverage fraction of the membrane surtace by PVA reacned up to 86.8% when me PVA content m me membrane recipe was 16.7% (by mass). The water contact angle decreased with the increase of PVA content. The effect of coagulation bath type on membrane structure was analyzed. The membrane pervaporation performance was evaluated by varying the PVA content, the annealing temperature, feed concentration and operation temperature. The membrane exhibited a fairly good ethanol dehydration capacity and long-term operational stability.展开更多
Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by ...Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by applying an external magnetic field around the friction region. Moreover, the morphology and the tribochemical characteristics of worn surfaces were examined by a scanning electron microscope(SEM) and an X-ray photoelectron spectrometer(XPS). Then the lubrication mechanisms were discussed. The tribological test results indicated that the wear scar diameters(WSDs) of steel balls lubricated by the T202-containing lubricating oils and the friction coefficients of the corresponding oil under magnetic field were smaller than those without magnetic affection. The worn surface lubricated with the T202-formulated oils in a magnetic field was smoother than that obtained under the normal condition. Furthermore, the results of XPS analysis indicated that tribochemical films on the surfaces lubricated with T202-doped oils were mainly composed of compounds such as FeSO_4, FeS and ZnS. The atomic concentrations of oxygen, sulfur, iron, zinc and phosphorus species identified in T202 under magnetic field were higher than those without magnetic impact. It can be inferred that the improved anti-wear and friction-reducing ability of T202-doped oils was attributed to the promoted tribochemical reactions and the modification of the worn surfaces induced by magnetic field.展开更多
Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution tr...Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5-5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24. 7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (Ms) and coercivity (Hc) of the product B are 107.4 emu/g and 143 Oe. resnectivelv. The formation of the CEINPs in the oroduct B is discussed briefly.展开更多
Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginn...Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginning of exposure and then slowly with time.The corrosion morphologies were observed and the results showed that NaCl deposition resulted in the occurrence of localized corrosion.The composition of corrosion product was analyzed using X-ray photo electron spectroscopy.It was suggested that the corrosion product was a mixture of oxide and hydroxide of magnesium and aluminum.展开更多
Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized b...Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffractometry(XRD) and energy dispersive X-ray micro analysis(EDS) techniques.The XPS results showed that there was only Au0 on the surface of catalysts.The XRD patterns showed that Au was presumably highly dispersed over γ-Al2O3.The temperatures for complete conversion of methanol,ethanol,iso-propanol and n-propanol with concentration of 2.0 g/m3 were 60,155,170 and 137 ℃,respectively,but they were completely mineralized into CO2 and H2O at 60,220,260 and 217 ℃ respectively over the optimized catalyst.The activity of the catalyst was stable in 130 h.The kinetics for the catalytic methanol elimination followed quasi-first order reaction expressed as r=0.652 8c0+0.084 2.The value of apparent activation energy is 54.7 kJ/mol in the range of reaction temperature.展开更多
By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy ...By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.展开更多
Abstract: In this work, the authors present a study of growth and characterization of composite based on AI and CNT (carbon nanotubes. The composites were prepared by a chemical mixing method and characterized by SE...Abstract: In this work, the authors present a study of growth and characterization of composite based on AI and CNT (carbon nanotubes. The composites were prepared by a chemical mixing method and characterized by SEM analysis, energy dispersed X-ray measurements, X-ray photoelectron spectroscopy and cathodoluminescence spectroscopy. The analysis showed that the composites are formed by macro-cluster of aluminum oxide on a network of CNT without formation of chemical bonds at interface between particles. The results are compared with those obtained for a sample of CNT with AI traces (〈 0.5%). They show that only the presence of metal traces changes the nanotubes optical properties, with a luminescence signal centered at about 380 nm. These luminescence signals are caused by the adhesion between CNT and AI micro-clusters that promote the formation of band gap with some local energy levels.展开更多
Alloy nanocrystals (NCs) of Pt with 3d transition metals, especially Ni, are excellent catalysts for the oxygen reduction reaction (ORR). In this work, we, for the first time, demonstrated the water phase colloida...Alloy nanocrystals (NCs) of Pt with 3d transition metals, especially Ni, are excellent catalysts for the oxygen reduction reaction (ORR). In this work, we, for the first time, demonstrated the water phase colloidal synthesis of Pt-M (M = Ni, Co and Fe) alloy NCs with tunable composition and morphology through a facile hydrothermal method. Pt-Ni alloy NCs synthesized with this method presented better ORR activity than commercial Pt/C catalysts. The X-ray energy dispersive spectra (EDS) mapping technique revealed that Pt-enriched shells existed on the as-synthesized Pt-Ni alloy NCs. About two atom thick layered Pt-enriched shells formed on Pts0Nis0 NCs and the thickness of the Pt-enriched shells increased as the Ni content increased. Furthermore, X-ray photoelectron spectroscopy analysis revealed that the oxidation level of the surface Pt atoms on the Pt-Ni alloy NCs decreased compared with monometallic Pt NCs, implying a decrease in the oxophilicity of the surface Pt atoms. Pt-Ni alloy NCs with lower oxophilicity of the surface Pt atoms give higher ORR activity. The most active alloy sample showed 13 times higher specific activity and six times higher mass activity at 0.9 V vs. a reversible hydrogen electrode when compared with commercial Pt/C. Pt-Ni alloy NCs also showed better durability than commercial Pt/C in long term ORR tests.展开更多
Cobalt (Co) exists in significant quantities in naturally occurring manganese (Mn) oxides and alters the growth of Mn oxide crystals. Four-layered Mn oxides, Na-buserite (Na-bus) and three Co-doped Na-buserite s...Cobalt (Co) exists in significant quantities in naturally occurring manganese (Mn) oxides and alters the growth of Mn oxide crystals. Four-layered Mn oxides, Na-buserite (Na-bus) and three Co-doped Na-buserite samples prepared from oxidation of Mn(OH)2 with 5%, 10%, and 20% Co/(Mn + Co) molar ratios (5Co-Na-bus, 10Co-Na-bus, and 20Co-Na-bus), were used to prepare todorokite, a common Mn oxide on the Earth's surface, using Mg2+/Co2+ ions as a template. The results showed that todorokites could be obtained by reflux treatment of Mg2+-exchanged non-doped Na-buserite and three Co-doped Na-buserites at atmospheric pressure. However, the formation of todorokites was prohibited by reflux treatment of Co2+-exchanged Na-bus, 5Co-Na-bus, and 10Co-Na-bus samples. Instead, todorokite was obtained by the reflux treatment of Co2+-exchanged 20Co-Na-bus samples under atmospheric pressure. X-ray photoelectron spectroscopy analysis showed that doped Co existed as Co3+ in the MnOs layers of doped Na-buserites. The amount of substituted Co3+ in the MnO6 layers may play a key role in the conversion of buserite to todorokite using Co2+ ions as a template.展开更多
A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface struc...A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface structure of the film were characterized by water contact angle measurement,atomic force microscopy(AFM),and X-ray photoelectron spectroscopy(XPS).The corrosion behavior of the complex films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy(EIS).The excellent corrosion resistance property could be attributed to the compact hybrid film structure and superior seawater stability for modified 304 stainless steel surface.展开更多
Technetium-99(~99Tc),largely produced by nuclear fission of ~235U or ~239Pu,is a component of radioactive waste.This study focused on a remediation strategy for the reduction of pertechnetate(Tc O_4^-)by studying its ...Technetium-99(~99Tc),largely produced by nuclear fission of ~235U or ~239Pu,is a component of radioactive waste.This study focused on a remediation strategy for the reduction of pertechnetate(Tc O_4^-)by studying its chemical analogue rhenium(Re(VⅡ))to avoid the complication of directly working with radioactive elements.Nanoscale zero-valent iron particles supported on graphene(NZVI/r GOs)from GOs-bound Fe ions were prepared by using a H_2/Ar plasma technique and were applied in the reductive immobilization of perrhenate(Re O_4^-).The experimental results demonstrated that NZVI/r GOs could efficiently remove Re from the aqueous solution,with enhanced reactivity,improved kinetics(50 min to reach equilibrium)and excellent removal capacity(85.77 mg/g).The results of X-ray photoelectron spectroscopy analysis showed that the mechanisms of Re immobilization by NZVI/r GOs included adsorption and reduction,which are significant to the prediction and estimation of the effectiveness of reductive Tc O_4^- by NZVI/r GOs in the natural environment.展开更多
Amorphous indium-tin-oxide(a-ITO) film was deposited by radio-frequency(RF) magnetron sputtering at 180°C substrate temperature on the texturized p-Si wafer to fabricate a-ITO/p-Si heterojunction solar cell.The m...Amorphous indium-tin-oxide(a-ITO) film was deposited by radio-frequency(RF) magnetron sputtering at 180°C substrate temperature on the texturized p-Si wafer to fabricate a-ITO/p-Si heterojunction solar cell.The microstructural,optical and electrical properties of the a-ITO film were characterized by XRD,SEM,XPS,UV-VIS spectrophotometer,four-point probe and Hall effect measurement,respectively.The electrical properties of heterojunction were investigated by I-V measurement,which reveals that the heterojunction shows strong rectifying behavior under a dark condition.The ideality factor and the saturation current density of this diode are 2.26 and 1.58×10-4 A cm-2,respectively.And the value of IF/IR(IF and IR stand for forward and reverse currents,respectively) at 1 V is found to be as high as 21.5.For the a-ITO/p-Si heterojunction solar cell,the a-ITO thin film acts not only as an emitter layer,but also as an anti-reflected coating film.The conversion efficiency of the fabricated a-ITO/p-Si heterojunction cell is approximately 1.1%,under 100 mW cm-2 illumination(AM1.5 condition).And the open-circuit voltage(Voc),short-circuit current density(J SC),filll factor(FF) are 280 mV,9.83 mA cm 2 and 39.9%,respectively.Because the ITO film deposited at low temperature is amorphous,it can effectively reduce the interface states between ITO and p-Si.The barrier height and internal electric field,which is near the surface of p-Si,can effectively be enhanced.Thus we can see the great photovoltaic effect.展开更多
Novel dual-responsive superhydrophobic hybrid materials, ZnO/SAMs (self-assembled monolayers) of ionic liquids (ILs) with different counter-anions (I^-, BF4^-, PF6^- and Tf2N^-), were synthesized and characteriz...Novel dual-responsive superhydrophobic hybrid materials, ZnO/SAMs (self-assembled monolayers) of ionic liquids (ILs) with different counter-anions (I^-, BF4^-, PF6^- and Tf2N^-), were synthesized and characterized. ZnO nanoparticles were first deposited on glass surfaces to produce roughness. Next, SAMs of fluorinated-alkyl-3-(3-triethoxysilylpropyl)-4,5-dihydro-imidazoliumiodide (abb. [C8Ftespim]I) were grafted onto these surfaces via -Si-O- covalent bonds using self-assembly technique. The I- ion could be subsequently exchanged with BF4, PF6-or Tf2N- through a simple aqueous anion-exchange reaction. The ZnO/ILs hybrid layers were characterized by atomic-force microscopy (AFM), scanning-electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Their wettability was estimated through the measurements of static and dynamic contact angles (CAs). Compared to corresponding films of ZnO/[CsFtespim]I with CAs 140.7° ±2.0°, films of ZnO/[CsFtespim]PF6 and ZnO/[CsFtespim]Tf2N showed CAs with 154.0° ± 2.0° and 152.0° ± 2.0°, respectively that remained for a long time. This result suggests that anion-exchange can afford superhydrophobic materials. In addition, the wettability of ZnO/[CsFtespim]X hybrid layers can be reversibly switched by altering ultraviolet (UV) irradiation and dark storage, which shows a photo-induced reversible switch of wettability. The synergistic action of ZnO nanoparticles and SAMs of ILs produced light-anion dual-responsive superhydrophobic materials with ideal stability.展开更多
文摘A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology.
基金the Portuguese Ministry of Science and Technology(FCT-MCTES)for offering post-doctoral fellowships through the grants SFRH/BPD/34542/2007 and SFRH/BPD/35055/2007,respectivelyfinanced by FCT-MCTES through CENIMAT-I3N
文摘N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the polycrystalline nature of the deposited films.The crystalline structure is influenced by the variation of OPP.Atomic force microscopy analysis confirmed the agglomeration of the neighboring spherical grains with a sharp increase of root mean square(RMS)roughness when the OPP is increased above 1.4×10-3 Pa.X-ray photoelectron spectroscopy analysis revealed that the incorporation of N content into the film is decreased with the increase of OPP,noticeably N 1s XPS peaks are hardly identified at 9.5×10-3 Pa.The average visible transmittance(380-700 nm) is increased with the increase of OPP(from~17%to 70%),and the optical absorption edge shifts towards the shorter wavelength.The films deposited with low OPP(≤3.0×10-4 Pa)show n-type conductivity and those deposited with high OPP(≥9.0×10-4 Pa)are highly resistive(>105Ω·cm)
基金Supported by the Fundamental Research Funds for the Central Universities(TD2013-2,2012LYB33)the National Natural Science Foundation of China(51278053,21373032)grant-in-aid from Kochi University of Technology and China Scholarship Council
文摘The adsorption of aqueous cadmium ions(Cd(Ⅱ)) have been investigated for modified activated carbon(AC-T)with oxygen-containing functional groups.The oxygen-containing groups of AC-T play an important role in Cd(Ⅱ) ion adsorption onto AC-T.The modified activated carbon is characterized by scanning electron microscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The results of batch experiments indicate that the maximal adsorption could be achieved over the broad pH range of 4.5 to 6.5.Adsorption isotherms and kinetic study suggest that the sorption of Cd(Ⅱ) onto AC-T produces monolayer coverage and that adsorption is controlled by chemical adsorption.And the adsorbent has a good reusability.According to the FT-IR and XPS analyses,electrostatic attraction and cation exchange between Cd(Ⅱ) and oxygen-containing functional groups on AC-T are dominant mechanisms for Cd(Ⅱ) adsorption.
文摘Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.
基金supported by the National Key Basic Research Program of China(973 Program,2012CB224802)the SINOPEC project(No.114013)
文摘The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were designed; the existing metal precursors, such as [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species in the solutions were confirmed by laser Raman spectroscopy(LRS). The UV-Vis spectra results indicated that the solutions containing both phosphoric acid and citric acid could change the existing form of nickel species. Five corresponding Ni Mo/Al_2O_3 catalysts were prepared by the incipient wetness impregnation method. The LRS analysis results of dried catalysts showed that the above metal precursors could be partly retained on alumina support after impregnation and drying, although the interface reaction between different metal precursors and alumina support unavoidably took place. Then the catalysts were sulfided and characterized by N2 physisorption, TEM and XPS analyses. The results showed that different metal precursors in impregnating solution could mainly result in the difference in both the morphology of(Ni)Mo S2 slabs and the promoting effect of Ni species. The catalyst prepared mainly with [P2Mo5O23]^(6-)-like species used as precursors exhibited worse dispersion of(Ni)Mo S2 slabs and lower ratio of Ni–Mo–S active phases than the one with [Mo4(citrate)2O11]^(4-)-like species. Promisingly, the catalyst prepared with co-existing [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species showed better hydrodesulfurization activity for 4,6-DMDBT thanks to its more well-dispersed Ni–Mo–S active phases.
基金Project(51371198)supported by the National Natural Science Foundation of China
文摘A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-dibromobutane and pyrrolidine, and subsequent ion exchange pathway with KOH followed by neutralization reaction via HBF4 in the system of ethanol solution. 1H NMR, 13 C NMR, FI-IR and XPS analyses showed the structure of SBP-BF4. The as-obtained SBP-BF4 was dissolved in AN and used as the electrolyte for supercapacitor. Electrochemical measurements demonstrate that, compared with commercial electrolyte TEMA-BF4/AN, SBP-BF4/AN exhibits high ionic conductivity, lower resistance and improved cycling performance, which is due to its smaller ion size and stable symmetry structure.
基金Supported by the State Key Development Program for Basic Research of China (2009CB623404)Program for New Century Excellent Talents in University,the Programme of Introducing Talents of Discipline to Universities (B06006)State KeyLaboratory for Modification of Chemical Fibers and Polymer Materials (Dong Hua University)
文摘A facile surface segregation method was utilized to fabricate poly(vinyl alcohol)-polyethersulfone (PVA-PES) composite membranes. PVA and PES were first dissolved in dimethyl sulfoxide (DMSO), then casted on a glass plate and immersed in a coagulation bath. During the phase inversion process in coagulation bath, PVA spontaneously segregated to the polymer solution/coagulation bath interface. The enriched PVA on the surface was further crosslinked by glutaraldehyde. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometer (EDS) confirmed the integral and asymmetric membrane structure with a dense PVA-enriched surface and a porous PES-enriched support, as well as the surface enrichment of PVA. The coverage fraction of the membrane surtace by PVA reacned up to 86.8% when me PVA content m me membrane recipe was 16.7% (by mass). The water contact angle decreased with the increase of PVA content. The effect of coagulation bath type on membrane structure was analyzed. The membrane pervaporation performance was evaluated by varying the PVA content, the annealing temperature, feed concentration and operation temperature. The membrane exhibited a fairly good ethanol dehydration capacity and long-term operational stability.
基金financial support provided by the National Natural Science Foundation of China(Project No.51375491)the Natural Science Foundation of Chongqing(Project No.CSTC,2014JCYJAA50021)the Innovation Fund of Logistical Engineering University(Project No.YZ13-43703)
文摘Tribological properties of 150 SN mineral oil and the oils doped with different contents of zinc butyloctyldithiophosphate(T202) under magnetic field or non-magnetic field were evaluated on a four-ball tribotester by applying an external magnetic field around the friction region. Moreover, the morphology and the tribochemical characteristics of worn surfaces were examined by a scanning electron microscope(SEM) and an X-ray photoelectron spectrometer(XPS). Then the lubrication mechanisms were discussed. The tribological test results indicated that the wear scar diameters(WSDs) of steel balls lubricated by the T202-containing lubricating oils and the friction coefficients of the corresponding oil under magnetic field were smaller than those without magnetic affection. The worn surface lubricated with the T202-formulated oils in a magnetic field was smoother than that obtained under the normal condition. Furthermore, the results of XPS analysis indicated that tribochemical films on the surfaces lubricated with T202-doped oils were mainly composed of compounds such as FeSO_4, FeS and ZnS. The atomic concentrations of oxygen, sulfur, iron, zinc and phosphorus species identified in T202 under magnetic field were higher than those without magnetic impact. It can be inferred that the improved anti-wear and friction-reducing ability of T202-doped oils was attributed to the promoted tribochemical reactions and the modification of the worn surfaces induced by magnetic field.
文摘Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5-5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24. 7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (Ms) and coercivity (Hc) of the product B are 107.4 emu/g and 143 Oe. resnectivelv. The formation of the CEINPs in the oroduct B is discussed briefly.
基金Projects(50671005,50971093)supported by the National Natural Science Foundation of ChinaProject(2007CB613705)supported by the National Basic Research Program of China
文摘Corrosion behavior of AZ91 magnesium alloy under NaCl particle deposition condition was investigated by gravimetric method and surface analysis technique.It was found that the mass gain increased rapidly at the beginning of exposure and then slowly with time.The corrosion morphologies were observed and the results showed that NaCl deposition resulted in the occurrence of localized corrosion.The composition of corrosion product was analyzed using X-ray photo electron spectroscopy.It was suggested that the corrosion product was a mixture of oxide and hydroxide of magnesium and aluminum.
基金Project supported by the Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education,China
文摘Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffractometry(XRD) and energy dispersive X-ray micro analysis(EDS) techniques.The XPS results showed that there was only Au0 on the surface of catalysts.The XRD patterns showed that Au was presumably highly dispersed over γ-Al2O3.The temperatures for complete conversion of methanol,ethanol,iso-propanol and n-propanol with concentration of 2.0 g/m3 were 60,155,170 and 137 ℃,respectively,but they were completely mineralized into CO2 and H2O at 60,220,260 and 217 ℃ respectively over the optimized catalyst.The activity of the catalyst was stable in 130 h.The kinetics for the catalytic methanol elimination followed quasi-first order reaction expressed as r=0.652 8c0+0.084 2.The value of apparent activation energy is 54.7 kJ/mol in the range of reaction temperature.
基金Financial support from the SINOPEC Research Program(No.ST13164-19]) is gratefully acknowledged
文摘By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.
文摘Abstract: In this work, the authors present a study of growth and characterization of composite based on AI and CNT (carbon nanotubes. The composites were prepared by a chemical mixing method and characterized by SEM analysis, energy dispersed X-ray measurements, X-ray photoelectron spectroscopy and cathodoluminescence spectroscopy. The analysis showed that the composites are formed by macro-cluster of aluminum oxide on a network of CNT without formation of chemical bonds at interface between particles. The results are compared with those obtained for a sample of CNT with AI traces (〈 0.5%). They show that only the presence of metal traces changes the nanotubes optical properties, with a luminescence signal centered at about 380 nm. These luminescence signals are caused by the adhesion between CNT and AI micro-clusters that promote the formation of band gap with some local energy levels.
基金We thank Prof. Dechun Zou and Mr. Ming Peng for their help with electrochemical characterization. This work was supported by the National Natural Science Foundation of China (Nos. 21025101, 21271011, and 21321001). Y. W. Z. particularly appreciates the financial aid from the China National Funds for Distinguished Young Scientists from the National Natural Science Foundation of China (NSFC). The work on micros- copy was partly carried out in the Center of Electron Microscopy of Zhejiang University, which was financially supported by the National Natural Science Foundation of China (No. 51222202), the National Basic Research Program of China (No. 2014CB932500) and the Program for Innovative Research Teams in Universities of Ministry of Education of China (No. IRT13037) and the Fundamental Research Funds for the Central Universities (No. 2014XZZX003-07).
文摘Alloy nanocrystals (NCs) of Pt with 3d transition metals, especially Ni, are excellent catalysts for the oxygen reduction reaction (ORR). In this work, we, for the first time, demonstrated the water phase colloidal synthesis of Pt-M (M = Ni, Co and Fe) alloy NCs with tunable composition and morphology through a facile hydrothermal method. Pt-Ni alloy NCs synthesized with this method presented better ORR activity than commercial Pt/C catalysts. The X-ray energy dispersive spectra (EDS) mapping technique revealed that Pt-enriched shells existed on the as-synthesized Pt-Ni alloy NCs. About two atom thick layered Pt-enriched shells formed on Pts0Nis0 NCs and the thickness of the Pt-enriched shells increased as the Ni content increased. Furthermore, X-ray photoelectron spectroscopy analysis revealed that the oxidation level of the surface Pt atoms on the Pt-Ni alloy NCs decreased compared with monometallic Pt NCs, implying a decrease in the oxophilicity of the surface Pt atoms. Pt-Ni alloy NCs with lower oxophilicity of the surface Pt atoms give higher ORR activity. The most active alloy sample showed 13 times higher specific activity and six times higher mass activity at 0.9 V vs. a reversible hydrogen electrode when compared with commercial Pt/C. Pt-Ni alloy NCs also showed better durability than commercial Pt/C in long term ORR tests.
基金Supported by the National Natural Science Foundation of China(Nos.41001139 and 40771102)
文摘Cobalt (Co) exists in significant quantities in naturally occurring manganese (Mn) oxides and alters the growth of Mn oxide crystals. Four-layered Mn oxides, Na-buserite (Na-bus) and three Co-doped Na-buserite samples prepared from oxidation of Mn(OH)2 with 5%, 10%, and 20% Co/(Mn + Co) molar ratios (5Co-Na-bus, 10Co-Na-bus, and 20Co-Na-bus), were used to prepare todorokite, a common Mn oxide on the Earth's surface, using Mg2+/Co2+ ions as a template. The results showed that todorokites could be obtained by reflux treatment of Mg2+-exchanged non-doped Na-buserite and three Co-doped Na-buserites at atmospheric pressure. However, the formation of todorokites was prohibited by reflux treatment of Co2+-exchanged Na-bus, 5Co-Na-bus, and 10Co-Na-bus samples. Instead, todorokite was obtained by the reflux treatment of Co2+-exchanged 20Co-Na-bus samples under atmospheric pressure. X-ray photoelectron spectroscopy analysis showed that doped Co existed as Co3+ in the MnOs layers of doped Na-buserites. The amount of substituted Co3+ in the MnO6 layers may play a key role in the conversion of buserite to todorokite using Co2+ ions as a template.
基金supported by the National Natural Science Foundation of China (Grant No. 51072188)the Natural Science Foundation of Shandong Province (Grant No. Y2008B46)
文摘A self-assembled 1-dodecanethiol film assisted with the preferential adhesion of polydopamine was prepared on the non-etching 304 stainless steel surfaces by a simple dip-coating method.The formation and surface structure of the film were characterized by water contact angle measurement,atomic force microscopy(AFM),and X-ray photoelectron spectroscopy(XPS).The corrosion behavior of the complex films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy(EIS).The excellent corrosion resistance property could be attributed to the compact hybrid film structure and superior seawater stability for modified 304 stainless steel surface.
基金the National Natural Science Foundation of China(21477133,41273134,91326202,21225730)
文摘Technetium-99(~99Tc),largely produced by nuclear fission of ~235U or ~239Pu,is a component of radioactive waste.This study focused on a remediation strategy for the reduction of pertechnetate(Tc O_4^-)by studying its chemical analogue rhenium(Re(VⅡ))to avoid the complication of directly working with radioactive elements.Nanoscale zero-valent iron particles supported on graphene(NZVI/r GOs)from GOs-bound Fe ions were prepared by using a H_2/Ar plasma technique and were applied in the reductive immobilization of perrhenate(Re O_4^-).The experimental results demonstrated that NZVI/r GOs could efficiently remove Re from the aqueous solution,with enhanced reactivity,improved kinetics(50 min to reach equilibrium)and excellent removal capacity(85.77 mg/g).The results of X-ray photoelectron spectroscopy analysis showed that the mechanisms of Re immobilization by NZVI/r GOs included adsorption and reduction,which are significant to the prediction and estimation of the effectiveness of reductive Tc O_4^- by NZVI/r GOs in the natural environment.
基金supported by the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University (Grant No.13M1060102)the Fundamental Research Funds for the Central Universities,China,Donghua University (Grant No. 13D110913)+5 种基金National Natural Science Foundation of China (Grant Nos. 51072034,11174048,51172042)the Cultivation Fund of the Key Scientific and Technical Innovation Project of China (Grant No. 708039)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 201100751300-01)Science and Technology Commission of Shanghai Municipality (Grant No. 12nm0503900)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Program of Introducing Talents of Discipline to Universities of China(Grant No. 111-2-04)
文摘Amorphous indium-tin-oxide(a-ITO) film was deposited by radio-frequency(RF) magnetron sputtering at 180°C substrate temperature on the texturized p-Si wafer to fabricate a-ITO/p-Si heterojunction solar cell.The microstructural,optical and electrical properties of the a-ITO film were characterized by XRD,SEM,XPS,UV-VIS spectrophotometer,four-point probe and Hall effect measurement,respectively.The electrical properties of heterojunction were investigated by I-V measurement,which reveals that the heterojunction shows strong rectifying behavior under a dark condition.The ideality factor and the saturation current density of this diode are 2.26 and 1.58×10-4 A cm-2,respectively.And the value of IF/IR(IF and IR stand for forward and reverse currents,respectively) at 1 V is found to be as high as 21.5.For the a-ITO/p-Si heterojunction solar cell,the a-ITO thin film acts not only as an emitter layer,but also as an anti-reflected coating film.The conversion efficiency of the fabricated a-ITO/p-Si heterojunction cell is approximately 1.1%,under 100 mW cm-2 illumination(AM1.5 condition).And the open-circuit voltage(Voc),short-circuit current density(J SC),filll factor(FF) are 280 mV,9.83 mA cm 2 and 39.9%,respectively.Because the ITO film deposited at low temperature is amorphous,it can effectively reduce the interface states between ITO and p-Si.The barrier height and internal electric field,which is near the surface of p-Si,can effectively be enhanced.Thus we can see the great photovoltaic effect.
基金financially supported by the National Natural Science Foundation of China(21033005,21273134)the National Basic Research Program of China(2009CB930103)+2 种基金the Natural Science Foundation of Shandong Province(Combination Research Projects,ZR2013EML003&ZR2013BL001)National Undergraduate Training Programs for Innovation and Entrepreneurship(201310448008)Research Projects of Solar Energy of Dezhou University(311416&SYJS-B13003)
文摘Novel dual-responsive superhydrophobic hybrid materials, ZnO/SAMs (self-assembled monolayers) of ionic liquids (ILs) with different counter-anions (I^-, BF4^-, PF6^- and Tf2N^-), were synthesized and characterized. ZnO nanoparticles were first deposited on glass surfaces to produce roughness. Next, SAMs of fluorinated-alkyl-3-(3-triethoxysilylpropyl)-4,5-dihydro-imidazoliumiodide (abb. [C8Ftespim]I) were grafted onto these surfaces via -Si-O- covalent bonds using self-assembly technique. The I- ion could be subsequently exchanged with BF4, PF6-or Tf2N- through a simple aqueous anion-exchange reaction. The ZnO/ILs hybrid layers were characterized by atomic-force microscopy (AFM), scanning-electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Their wettability was estimated through the measurements of static and dynamic contact angles (CAs). Compared to corresponding films of ZnO/[CsFtespim]I with CAs 140.7° ±2.0°, films of ZnO/[CsFtespim]PF6 and ZnO/[CsFtespim]Tf2N showed CAs with 154.0° ± 2.0° and 152.0° ± 2.0°, respectively that remained for a long time. This result suggests that anion-exchange can afford superhydrophobic materials. In addition, the wettability of ZnO/[CsFtespim]X hybrid layers can be reversibly switched by altering ultraviolet (UV) irradiation and dark storage, which shows a photo-induced reversible switch of wettability. The synergistic action of ZnO nanoparticles and SAMs of ILs produced light-anion dual-responsive superhydrophobic materials with ideal stability.