在能量色散X荧光分析技术中,常用基本参数法、经验系数法、人工神经网络等方法建立计数率和元素含量之间的物理模型,此外,GMDH(group method of data handing)作为一种新型的处理复杂非线性问题的方法,被大量理论和实验证明优于大部分...在能量色散X荧光分析技术中,常用基本参数法、经验系数法、人工神经网络等方法建立计数率和元素含量之间的物理模型,此外,GMDH(group method of data handing)作为一种新型的处理复杂非线性问题的方法,被大量理论和实验证明优于大部分的计算统计方法。GMDH是一种自组织学习的前馈型网络,自动筛选并在训练过程中确定其结构,对GMDH进行改进并对结果进行定量预测,参考值与预测值的相对误差在5%以内,方法简洁、合理、可靠。展开更多
This study focused on the performance of where elements analysing techniques were used to detect the elements in granite stones. These techniques are NAA (neutron activation analysis) and XRF (X-ray fluorescence)....This study focused on the performance of where elements analysing techniques were used to detect the elements in granite stones. These techniques are NAA (neutron activation analysis) and XRF (X-ray fluorescence). They were applied to detect the elements in samples which had been chosen from different areas of Pulua Penang in Malaysia collected by geophysics group which helped to describe and identify the elements found in the granite stone that were used in the study procedures to control the analytical results. The integration of both methods has enabled the researcher to determine 40 elements in the samples. The numbers of elements detected by XRF analysis method are 12 elements (Ar, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn); while, the elements detected by NAA method have three folds of elements with XRF analysis method were 35 elements (Na, AI, Si, K, Ca, Sc,Ti, Mn, Fe, Co, Ga, Ce, As, Br, Rb, Zr, Sb, I, Cs, Ba, La, Nd, Sm, Eu,Tb, Dy, Yb, Lu, Hf, Ta, W, Au, Pa and Np). Seven common elements were detected in both techniques: K, Sc, Ti, V, Mn, Fe and Co. Si has a higher concentration in NAA technique which is 331.8 ppm. Sc has a lower concentration in XRF technique which is 0.25 ppm. Nd has a lower concentration in NAA technique which is 3.09 - 10-5 ppm. Finally, it is found that the NAA is better to detect the elements than XRF.展开更多
文摘在能量色散X荧光分析技术中,常用基本参数法、经验系数法、人工神经网络等方法建立计数率和元素含量之间的物理模型,此外,GMDH(group method of data handing)作为一种新型的处理复杂非线性问题的方法,被大量理论和实验证明优于大部分的计算统计方法。GMDH是一种自组织学习的前馈型网络,自动筛选并在训练过程中确定其结构,对GMDH进行改进并对结果进行定量预测,参考值与预测值的相对误差在5%以内,方法简洁、合理、可靠。
文摘This study focused on the performance of where elements analysing techniques were used to detect the elements in granite stones. These techniques are NAA (neutron activation analysis) and XRF (X-ray fluorescence). They were applied to detect the elements in samples which had been chosen from different areas of Pulua Penang in Malaysia collected by geophysics group which helped to describe and identify the elements found in the granite stone that were used in the study procedures to control the analytical results. The integration of both methods has enabled the researcher to determine 40 elements in the samples. The numbers of elements detected by XRF analysis method are 12 elements (Ar, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn); while, the elements detected by NAA method have three folds of elements with XRF analysis method were 35 elements (Na, AI, Si, K, Ca, Sc,Ti, Mn, Fe, Co, Ga, Ce, As, Br, Rb, Zr, Sb, I, Cs, Ba, La, Nd, Sm, Eu,Tb, Dy, Yb, Lu, Hf, Ta, W, Au, Pa and Np). Seven common elements were detected in both techniques: K, Sc, Ti, V, Mn, Fe and Co. Si has a higher concentration in NAA technique which is 331.8 ppm. Sc has a lower concentration in XRF technique which is 0.25 ppm. Nd has a lower concentration in NAA technique which is 3.09 - 10-5 ppm. Finally, it is found that the NAA is better to detect the elements than XRF.