The electronic states of the surface and interface of 3,4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA)/indium-tin-oxide (ITO) thin film are investigated using X-ray photoelectron spectroscopy (XPS). A- tom...The electronic states of the surface and interface of 3,4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA)/indium-tin-oxide (ITO) thin film are investigated using X-ray photoelectron spectroscopy (XPS). A- tomic force microscopy (AFM) is also applied to investigate the pattern of PTCDA/ITO film. XPS results show that there are two main peaks,which are associated with C atoms in the perylene rings and acid anhydride groups, located at 284.6 and 288.7eV, respectively,in the Cls spectrum of the original surface. It can be deduced from the emergence of a small peak at 290.4eV in the Cls spectrum that some C atoms are oxidized by O atoms from ITO. The binding energies of O atoms in C-O bonds and C--O---C bonds are 531.5 and 533.4eV respectively. At the interface,the peak at the high binding energy in the Cls spectrum disappears,and the peak value shifts about 0.2eV to lower binding energy, There is a significant 1.5eV chemical shift to lower binding energy in the Ols spectrum. These observations indicate that perylene rings inside PTCDA molecules are combined with In vacancies in the ITO at the interface. The AFM results show that PTCDA molecules formed an island-like structure a height of about 14nm. The sizes of the crystal grains are about 100--300nm. The island-like pattern comes from the delocalized π bonds of adjacent molecules in PTCDA and the combination of vacancies in ITO with perylene rings at the PTCDA/ITO interface.展开更多
[Objective] The aim was to improve the adhesive bonding property of wheat straw surface to prepare wheat straw particleboard of soy protein isolate (SPI) adhesive through chemical and enzyme treatments. [Method] Eva...[Objective] The aim was to improve the adhesive bonding property of wheat straw surface to prepare wheat straw particleboard of soy protein isolate (SPI) adhesive through chemical and enzyme treatments. [Method] Evaluation and analysis were made on wettability of wheat straws in the control group and treated groups (chemical and enzyme treatments) by means of measurement of contact angle and calculation of spreading-penetration parameters (K). In addition, we made analysis on surface elements through X-ray photoelectron spectroscopy (XPS). [Result] The re- sults showed that K value of straw treated with sodium hydroxide, hydrogen peroxide and lipase increased by 58.0%, 48.7% and 83.2% compared to that of control group, respectively. The XPS analysis indicated that rapid decrease of silicon content and destruction of wax layer greatly contributed to wettability improvement of wheat straw surface. [Conclusion] The chemical and lipase treatments of wheat straw provided technical support for manufacture of wheat straw particle boand.展开更多
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol...Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.展开更多
Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmen...Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.展开更多
HAXPES (hard X-ray photoelectron spectroscopy) is a powerful emerging instrument in surface analysis. It extended the photoelectron energy range up to 15,000 eV and opened the possibility to study much thicker films...HAXPES (hard X-ray photoelectron spectroscopy) is a powerful emerging instrument in surface analysis. It extended the photoelectron energy range up to 15,000 eV and opened the possibility to study much thicker films, buried layers and bulk electronic properties. In order to study these features, data for the electron IMFP (inelastic mean free path) at these energies is needed. To date, only calculated IMFP are available at energies above 5,000 eV and therefore experimental validation of these calculations are essential. In this paper, a new approach for using the HAXPES spectra is presented. This approach, treats the attenuated part of the electron spectrum as a whole to calculating the average electron energy loss. This average electron energy loss is the result of inelastic collisions in the material and hence, carry with it information about the electron transport poses. Carbon layers with thicknesses between 20 and 75 nanometer deposited over copper substrate were used to test this approach at the Spanish beam-line (Spline) in the ESRF (European synchrotron radiation facility). The measured results showed good agreement with the predictions of the multiple inelastic scattering theory. In addition, an algorithm for the experimental evaluation of electron IMFP, using the measured energy loss, is proposed.展开更多
文摘The electronic states of the surface and interface of 3,4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA)/indium-tin-oxide (ITO) thin film are investigated using X-ray photoelectron spectroscopy (XPS). A- tomic force microscopy (AFM) is also applied to investigate the pattern of PTCDA/ITO film. XPS results show that there are two main peaks,which are associated with C atoms in the perylene rings and acid anhydride groups, located at 284.6 and 288.7eV, respectively,in the Cls spectrum of the original surface. It can be deduced from the emergence of a small peak at 290.4eV in the Cls spectrum that some C atoms are oxidized by O atoms from ITO. The binding energies of O atoms in C-O bonds and C--O---C bonds are 531.5 and 533.4eV respectively. At the interface,the peak at the high binding energy in the Cls spectrum disappears,and the peak value shifts about 0.2eV to lower binding energy, There is a significant 1.5eV chemical shift to lower binding energy in the Ols spectrum. These observations indicate that perylene rings inside PTCDA molecules are combined with In vacancies in the ITO at the interface. The AFM results show that PTCDA molecules formed an island-like structure a height of about 14nm. The sizes of the crystal grains are about 100--300nm. The island-like pattern comes from the delocalized π bonds of adjacent molecules in PTCDA and the combination of vacancies in ITO with perylene rings at the PTCDA/ITO interface.
基金Supported by the Project of Returned Overseas of Harbin Science and Technology Bureau(RC2010LX002005)the Project of Science and Technology Department of Heilongjiang Province(LC07C27)~~
文摘[Objective] The aim was to improve the adhesive bonding property of wheat straw surface to prepare wheat straw particleboard of soy protein isolate (SPI) adhesive through chemical and enzyme treatments. [Method] Evaluation and analysis were made on wettability of wheat straws in the control group and treated groups (chemical and enzyme treatments) by means of measurement of contact angle and calculation of spreading-penetration parameters (K). In addition, we made analysis on surface elements through X-ray photoelectron spectroscopy (XPS). [Result] The re- sults showed that K value of straw treated with sodium hydroxide, hydrogen peroxide and lipase increased by 58.0%, 48.7% and 83.2% compared to that of control group, respectively. The XPS analysis indicated that rapid decrease of silicon content and destruction of wax layer greatly contributed to wettability improvement of wheat straw surface. [Conclusion] The chemical and lipase treatments of wheat straw provided technical support for manufacture of wheat straw particle boand.
文摘Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.
文摘Electrochemical energy conversion technologies involving processes such as water splitting and O_(2)/CO_(2) reduction,provide promising solutions for addressing global energy scarcity and minimizing adverse environmental impact.However,due to a lack of an in-depth understanding of the reaction mechanisms and the nature of the active sites,further advancement of these techniques has been limited by the development of efficient and robust catalysts.Therefore,in situ characterization of these electrocatalytic processes under working conditions is essential.In this review,recent applications of in situ Raman spectroscopy and X-ray absorption spectroscopy for various nano-and single-atom catalysts in energy-related reactions are summarized.Notable cases are highlighted,including the capture of oxygen-containing intermediate species formed during the reduction of oxygen and oxidation of hydrogen,and the detection of catalyst structural transformations occurring with the change in potential during the evolution of oxygen and reduction of CO_(2).Finally,the challenges and outlook for advancing in situ spectroscopic technologies to gain a deeper fundamental understanding of these energy-related electrocatalytic processes are discussed.
文摘HAXPES (hard X-ray photoelectron spectroscopy) is a powerful emerging instrument in surface analysis. It extended the photoelectron energy range up to 15,000 eV and opened the possibility to study much thicker films, buried layers and bulk electronic properties. In order to study these features, data for the electron IMFP (inelastic mean free path) at these energies is needed. To date, only calculated IMFP are available at energies above 5,000 eV and therefore experimental validation of these calculations are essential. In this paper, a new approach for using the HAXPES spectra is presented. This approach, treats the attenuated part of the electron spectrum as a whole to calculating the average electron energy loss. This average electron energy loss is the result of inelastic collisions in the material and hence, carry with it information about the electron transport poses. Carbon layers with thicknesses between 20 and 75 nanometer deposited over copper substrate were used to test this approach at the Spanish beam-line (Spline) in the ESRF (European synchrotron radiation facility). The measured results showed good agreement with the predictions of the multiple inelastic scattering theory. In addition, an algorithm for the experimental evaluation of electron IMFP, using the measured energy loss, is proposed.