The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These t...The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.展开更多
A ZSM-5/MOR co-crystalline zeolite was synthesized without using the template. The physico-chemical properties of the zeolite were characterized by XRD, FT-IR, SEM and TPD and then compared with the co-crystalline zeo...A ZSM-5/MOR co-crystalline zeolite was synthesized without using the template. The physico-chemical properties of the zeolite were characterized by XRD, FT-IR, SEM and TPD and then compared with the co-crystalline zeolite synthesized with a template. Analytical results indicated that they were similar in structure and composition. The influences ofpH value and Si/Al ratio on synthesis were studied. It was found that a high pH value or a low Si/AI ratio could provide better environment for mordenite (MOR) crystallization. The zeolites applied as catalysts in naphtha catalytic cracking for producing ethylene and propylene showed outstanding catalytic performance with the total yield of ethylene and propylene reaching 55 m%. The process could achieve most favorable efficiency when the catalyst contained 5 m% of MOR.展开更多
Bi-metallic(Pt–Sn and Sn–Ni) and tri-metallic(Pt–Sn–Ni) catalysts,supported on Al-containing hexagonal mesoporous silica(Al-HMS)(Si/Al = 20) materials,were synthesized.N_2 adsorption–desorption,X-ray diffraction(...Bi-metallic(Pt–Sn and Sn–Ni) and tri-metallic(Pt–Sn–Ni) catalysts,supported on Al-containing hexagonal mesoporous silica(Al-HMS)(Si/Al = 20) materials,were synthesized.N_2 adsorption–desorption,X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET) test,and temperature programed desorption(NH3-TPD)were used to characterize physicochemical characteristics and textural properties of the Al-HMS catalysts.Catalytic performances on hydro-cracking of n-decane at different reaction conditions were studied in a microreactor.Comparison between Pt–Sn,Sn–Ni and Pt–Sn–Ni catalyst under different hydro-cracking conditions was made.The experimental results indicate that the proper balance between the acid and metal functions is the key in synthesizing a catalyst with a better performance in hydro-cracking.Tri-metallic catalyst exhibits the best catalytic performance in n-decane hydro-cracking than two bi-metallic catalysts.展开更多
Elucidating protein translational regulation is crucial for understanding cellular function and drug development.A key molecule in protein translation is ribosome,which is a super-molecular complex extensively studied...Elucidating protein translational regulation is crucial for understanding cellular function and drug development.A key molecule in protein translation is ribosome,which is a super-molecular complex extensively studied for more than a half century.The structure and dynamics of ribosome complexes were resolved recently thanks to the development of X-ray crystallography,Cryo-EM,and single molecule biophysics.Current studies of the ribosome have shown multiple functional states,each with a unique conformation.In this study,we analyzed the RNA-protein distances of ribosome(2.5 MDa)complexes and compared these changes among different ribosome complexes.We found that the RNA-protein distance is significantly correlated with the ribosomal functional state.Thus,the analysis of RNA-protein binding distances at important functional sites can distinguish ribosomal functional states and help understand ribosome functions.In particular,the mechanism of translational attenuation by nascent peptides and antibiotics was revealed by the conformational changes of local functional sites.展开更多
文摘The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.
基金funded by the National Basic Research Program of China (Project No. 2003CB615804) the joint funding of the National Natural Science Foundation of China and SINOPEC (NO.20736011)
文摘A ZSM-5/MOR co-crystalline zeolite was synthesized without using the template. The physico-chemical properties of the zeolite were characterized by XRD, FT-IR, SEM and TPD and then compared with the co-crystalline zeolite synthesized with a template. Analytical results indicated that they were similar in structure and composition. The influences ofpH value and Si/Al ratio on synthesis were studied. It was found that a high pH value or a low Si/AI ratio could provide better environment for mordenite (MOR) crystallization. The zeolites applied as catalysts in naphtha catalytic cracking for producing ethylene and propylene showed outstanding catalytic performance with the total yield of ethylene and propylene reaching 55 m%. The process could achieve most favorable efficiency when the catalyst contained 5 m% of MOR.
文摘Bi-metallic(Pt–Sn and Sn–Ni) and tri-metallic(Pt–Sn–Ni) catalysts,supported on Al-containing hexagonal mesoporous silica(Al-HMS)(Si/Al = 20) materials,were synthesized.N_2 adsorption–desorption,X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET) test,and temperature programed desorption(NH3-TPD)were used to characterize physicochemical characteristics and textural properties of the Al-HMS catalysts.Catalytic performances on hydro-cracking of n-decane at different reaction conditions were studied in a microreactor.Comparison between Pt–Sn,Sn–Ni and Pt–Sn–Ni catalyst under different hydro-cracking conditions was made.The experimental results indicate that the proper balance between the acid and metal functions is the key in synthesizing a catalyst with a better performance in hydro-cracking.Tri-metallic catalyst exhibits the best catalytic performance in n-decane hydro-cracking than two bi-metallic catalysts.
基金partially supported by National Institute of Health(R21/R33-GM078601 and R01-GM100701)National Science Foundation(MCB-1151343)in the US
文摘Elucidating protein translational regulation is crucial for understanding cellular function and drug development.A key molecule in protein translation is ribosome,which is a super-molecular complex extensively studied for more than a half century.The structure and dynamics of ribosome complexes were resolved recently thanks to the development of X-ray crystallography,Cryo-EM,and single molecule biophysics.Current studies of the ribosome have shown multiple functional states,each with a unique conformation.In this study,we analyzed the RNA-protein distances of ribosome(2.5 MDa)complexes and compared these changes among different ribosome complexes.We found that the RNA-protein distance is significantly correlated with the ribosomal functional state.Thus,the analysis of RNA-protein binding distances at important functional sites can distinguish ribosomal functional states and help understand ribosome functions.In particular,the mechanism of translational attenuation by nascent peptides and antibiotics was revealed by the conformational changes of local functional sites.