Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gra...Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gradient. X-ray diffraction method widely used for stress measurements has some difficulties in interpretation of experimental data, when the depth of X-ray penetration is compared with thickness of surface layer where inhomogeneous stress distribution is localized. Early it has been shown by authors that diffraction line broadening occurs when analyzed surface is characterized by strong gradient. The interest to study the diffraction line broadening is connected to the possibility of obtaining information about parameters of surface stress distribution. In the present paper the convolution and deconvolution concepts of Fourier analysis were applied to study X ray diffraction line broadening caused by surface stress gradients. Developed methodology allows determining of stress distribution in superficial layers of materials.展开更多
The distribution and verticals variation of geochemical components in the Kasnau-Matasukh lignites of Nagaur Basin, Rajasthan, were investigated using microscopy, proximate and ultimate analyses, Rock-Eval Pyrolysis, ...The distribution and verticals variation of geochemical components in the Kasnau-Matasukh lignites of Nagaur Basin, Rajasthan, were investigated using microscopy, proximate and ultimate analyses, Rock-Eval Pyrolysis, X-ray diffraction and Fourier Transform Infrared analyses, and major/minor/trace element determination. The relationship of elements with ash content and with macerals have also been discussed. These lignites are stratified, black, dominantly composed of huminite group macerals with subordinated amounts of liptinite and inertinite groups. They are classified as type-III kerogen and are mainly gas prone in nature. The concentration (in vol%) of mineral matter is seen to increase towards upper part of seam and so is the concentration (in wt%) of the volatile matter, elemental carbon and sulphur. The common minerals present in these lignitesare mixed clay layer, chlorite, and quartz as identified by X-ray diffraction study. Compared with world average in brown coal, the bulk concentration of Cu is anomalously high in most of the samples while Cd is 2-3 times high and Zn is high in one band. Based on interrelationship, different pyrite forms are noticed to have different preferential enrichment of various elements. The concentration of disseminated pyrite is more than the other pyrite forms and is followed by discrete pyrite grains and massive pyrite.展开更多
文摘Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gradient. X-ray diffraction method widely used for stress measurements has some difficulties in interpretation of experimental data, when the depth of X-ray penetration is compared with thickness of surface layer where inhomogeneous stress distribution is localized. Early it has been shown by authors that diffraction line broadening occurs when analyzed surface is characterized by strong gradient. The interest to study the diffraction line broadening is connected to the possibility of obtaining information about parameters of surface stress distribution. In the present paper the convolution and deconvolution concepts of Fourier analysis were applied to study X ray diffraction line broadening caused by surface stress gradients. Developed methodology allows determining of stress distribution in superficial layers of materials.
文摘The distribution and verticals variation of geochemical components in the Kasnau-Matasukh lignites of Nagaur Basin, Rajasthan, were investigated using microscopy, proximate and ultimate analyses, Rock-Eval Pyrolysis, X-ray diffraction and Fourier Transform Infrared analyses, and major/minor/trace element determination. The relationship of elements with ash content and with macerals have also been discussed. These lignites are stratified, black, dominantly composed of huminite group macerals with subordinated amounts of liptinite and inertinite groups. They are classified as type-III kerogen and are mainly gas prone in nature. The concentration (in vol%) of mineral matter is seen to increase towards upper part of seam and so is the concentration (in wt%) of the volatile matter, elemental carbon and sulphur. The common minerals present in these lignitesare mixed clay layer, chlorite, and quartz as identified by X-ray diffraction study. Compared with world average in brown coal, the bulk concentration of Cu is anomalously high in most of the samples while Cd is 2-3 times high and Zn is high in one band. Based on interrelationship, different pyrite forms are noticed to have different preferential enrichment of various elements. The concentration of disseminated pyrite is more than the other pyrite forms and is followed by discrete pyrite grains and massive pyrite.