Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this...Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.展开更多
The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory...The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.展开更多
This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-...This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-umbilical totally real submanifolds must be minimal submanifolds are proved.展开更多
We investigate a new generalized projective synchronization between two complex dynamical networks of different sizes. To the best of our knowledge, most of the current studies on projective synchronization have dealt...We investigate a new generalized projective synchronization between two complex dynamical networks of different sizes. To the best of our knowledge, most of the current studies on projective synchronization have dealt with coupled networks of the same size. By generalized projective synchronization, we mean that the states of the nodes in each network can realize complete synchronization, and the states of a pair of nodes from both networks can achieve projective synchronization. Using the stability theory of the dynamical system, several sufficient conditions for guaranteeing the existence of the generalized projective synchronization under feedback control and adaptive control are obtained. As an example, we use Chua’s circuits to demonstrate the effectiveness of our proposed approach.展开更多
We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks wi...We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.展开更多
This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 ...This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 〈 q 〈 1 is obtained based on the stability theory of the fractional-order system. The control method which combines active control with pinning control is then suggested to obtain the controllers. Furthermore, the adaptive strategy is applied to tune the control gains and coupling strength. Corresponding numerical simulations are performed to verify and illustrate the theoretical results.展开更多
This paper deals with the modified function projective synchronization problem for general complex networks with multiple proportional delays. With the existence of multiple proportional delays, an effective hybrid fe...This paper deals with the modified function projective synchronization problem for general complex networks with multiple proportional delays. With the existence of multiple proportional delays, an effective hybrid feedback control is designed to attain modified function projective synchronization of networks. Numerical example is provided to show the effectiveness of our result.展开更多
We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controller...We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently for the nodes in one community, which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities. Some sufficient criteria are derived to ensure the nodes in the same group projectively synchronize and there is also projective synchronization between nodes in different groups. Particularly, the weight configuration matrix is not assumed to be symmetric or irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results.展开更多
Let M be a n-dimensional compact irreducible complex space with a line bundle L. It is shown that if M is completely intersected with respect to L and dimH0(M, L) = n + 1, then M is biholomorphic to a complex projecti...Let M be a n-dimensional compact irreducible complex space with a line bundle L. It is shown that if M is completely intersected with respect to L and dimH0(M, L) = n + 1, then M is biholomorphic to a complex projective space Pn of dimension n.展开更多
Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link....Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.展开更多
We discussed a totally real Riemannian foliations with parallel mean curvature on a complex projective space.We carried out the divergence of a vector field on it and obtained a formula of Simons’type.
In this paper, we discuss the relations between the 2-harmornic totally real submsnifold and the minimal totall real submanifold in the complex protective spsace, and obtain the pinching conductions for the second fu...In this paper, we discuss the relations between the 2-harmornic totally real submsnifold and the minimal totall real submanifold in the complex protective spsace, and obtain the pinching conductions for the second fundamental form and the Rieci curature of the 2-harmornic totally real submanifold in the complex projective space.展开更多
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where...To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.展开更多
In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi...In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.展开更多
Project management is a well understood management method, widely adopted today, in order to give predictable results to complex problems. However, quite often projects fail to satisfy their initial objectives. This i...Project management is a well understood management method, widely adopted today, in order to give predictable results to complex problems. However, quite often projects fail to satisfy their initial objectives. This is why studying the factors that affect the complexity of projects is quite important. In this paper, we will present the complexity factors that are related to project time, cost and quality management and then we will apply them to a number of selected projects, in order to compare the acquired results. The projects have been chosen in a way that results can be easily compared.展开更多
In this paper, based on the notion of mixed complex projection and generalized the recent works of other authors, we obtain some volume difference inequalities containing Brunn-Minkowski type inequality, Minkowski typ...In this paper, based on the notion of mixed complex projection and generalized the recent works of other authors, we obtain some volume difference inequalities containing Brunn-Minkowski type inequality, Minkowski type inequality and Aleksandrov-Fenchel inequality for the polars of mixed complex projection bodies.展开更多
Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain an...Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.展开更多
Safety risks are essential to the success or failure of the large⁃scale complex projects.In order to assess and evaluate the safety risks of the large⁃scale complex projects scientifically,a risk assessment method of ...Safety risks are essential to the success or failure of the large⁃scale complex projects.In order to assess and evaluate the safety risks of the large⁃scale complex projects scientifically,a risk assessment method of work breakdown structure and risk breakdown structure(WBS⁃RBS)is proposed to identify the project risks.In this paper,interval numbers are used to evaluate the risk levels,weights are assigned automatically based on the complexity and risk degree of WBS to distinguish three types of nodes in WBS,and a risk assessment algorithm is designed to assess safety risk at all layers of the project.A case study is conducted to demonstrate how to apply the method.The results show the practicality,robustness and efficiency of our new method,which can be applied to different kinds of large⁃scale complex projects in reality.展开更多
The SOD-like activities of SOD, four Cu(Ⅱ)Complexes, SOD-and Cu(Ⅱ)com-plex-liposomes were determined respectively by using cytochrome C method. The results showed that all of these systems had SOD-like activities to...The SOD-like activities of SOD, four Cu(Ⅱ)Complexes, SOD-and Cu(Ⅱ)com-plex-liposomes were determined respectively by using cytochrome C method. The results showed that all of these systems had SOD-like activities to some extent of which the Cu(His)_2-liposome displayed the highest activity and the Cu(Ⅱ)complexes and liposomes had some positive cooperative action.展开更多
A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has diff...A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has different numbers of equilibria for different ranges of parameters. The dynamics of the proposed system is investigated by means of phase portraits, Lyapunov exponents, bifurcation diagrams, and basins of attraction. The results show abundant dynamical characteristics. Particularly, the phenomena of extreme multistability as well as hidden attractors are discovered. In addition, the complex generalized projective synchronization is implemented between two fractional-order hyperchaotic complex systems with different fractional orders. Based on the fractional Lyapunov stability theorem, the synchronization controllers are designed, and the theoretical results are verified and demonstrated by numerical simulations. It lays the foundation for practical applications of the proposed system.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.60573172and60973152)the Superior University Doctor Subject Special Scientific Research Foundation of China(Grant No.20070141014)the Natural Science Foundation of Liaoning Province,China(Grant No.20082165)
文摘Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.
文摘The adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions is investigated in this paper. Based on Lyapunov stability theory and Barbalat's lemma, generalized matrix projective lag synchronization criteria are derived by using the adaptive control method. Furthermore, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. In addition, numerical simulation results are presented to illustrate the effectiveness of this method, showing that the synchronization speed is sensitively influenced by the adaptive law strength, the network size, and the network topological structure.
基金the Natural Science Foundation of Education Committee of Anhui Province(2004kj166zd)Foundation for Younger Teachers of Anhui Normal University(2005xqn01).
文摘This paper studies the relationship between the pseudo-umbilical totally real submanifolds and the minimal totally real submanifolds in a complex projective space. Two theo- rems which claim that some types of pseudo-umbilical totally real submanifolds must be minimal submanifolds are proved.
基金the National Natural Science Foundation of China(Grant Nos.61004101,11161013,and 61164020)the Natural Science Foundation of Guangxi Province,China(Grant Nos.2011GXNSFB018059,2011GXNSFA018136,and 2011GXNSFA018134)
文摘We investigate a new generalized projective synchronization between two complex dynamical networks of different sizes. To the best of our knowledge, most of the current studies on projective synchronization have dealt with coupled networks of the same size. By generalized projective synchronization, we mean that the states of the nodes in each network can realize complete synchronization, and the states of a pair of nodes from both networks can achieve projective synchronization. Using the stability theory of the dynamical system, several sufficient conditions for guaranteeing the existence of the generalized projective synchronization under feedback control and adaptive control are obtained. As an example, we use Chua’s circuits to demonstrate the effectiveness of our proposed approach.
基金the National Natural Science Foundation of China(Grant No.70871056)the Fundamental Research Funds for the Central Universities,China(Grant No.2013B10014)
文摘We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.
文摘This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 〈 q 〈 1 is obtained based on the stability theory of the fractional-order system. The control method which combines active control with pinning control is then suggested to obtain the controllers. Furthermore, the adaptive strategy is applied to tune the control gains and coupling strength. Corresponding numerical simulations are performed to verify and illustrate the theoretical results.
文摘This paper deals with the modified function projective synchronization problem for general complex networks with multiple proportional delays. With the existence of multiple proportional delays, an effective hybrid feedback control is designed to attain modified function projective synchronization of networks. Numerical example is provided to show the effectiveness of our result.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 70871056 and 71271103)the Six Talents Peak Foundation of Jiangsu Province,China
文摘We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently for the nodes in one community, which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities. Some sufficient criteria are derived to ensure the nodes in the same group projectively synchronize and there is also projective synchronization between nodes in different groups. Particularly, the weight configuration matrix is not assumed to be symmetric or irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results.
文摘Let M be a n-dimensional compact irreducible complex space with a line bundle L. It is shown that if M is completely intersected with respect to L and dimH0(M, L) = n + 1, then M is biholomorphic to a complex projective space Pn of dimension n.
文摘Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.
文摘We discussed a totally real Riemannian foliations with parallel mean curvature on a complex projective space.We carried out the divergence of a vector field on it and obtained a formula of Simons’type.
文摘In this paper, we discuss the relations between the 2-harmornic totally real submsnifold and the minimal totall real submanifold in the complex protective spsace, and obtain the pinching conductions for the second fundamental form and the Rieci curature of the 2-harmornic totally real submanifold in the complex projective space.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273088,10971120,and 61001099)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FM010)
文摘To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2012041)the Jiangsu Province Ordinary University Graduate Student Research Innovation Project(Grant No.CXZZ13_0256)
文摘In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.
文摘Project management is a well understood management method, widely adopted today, in order to give predictable results to complex problems. However, quite often projects fail to satisfy their initial objectives. This is why studying the factors that affect the complexity of projects is quite important. In this paper, we will present the complexity factors that are related to project time, cost and quality management and then we will apply them to a number of selected projects, in order to compare the acquired results. The projects have been chosen in a way that results can be easily compared.
文摘In this paper, based on the notion of mixed complex projection and generalized the recent works of other authors, we obtain some volume difference inequalities containing Brunn-Minkowski type inequality, Minkowski type inequality and Aleksandrov-Fenchel inequality for the polars of mixed complex projection bodies.
基金supported by the National Natural Science Foundation of China(7157105771390522)the Key Lab for Public Engineering Audit of Jiangsu Province,Nanjing Audit University(GGSS2016-08)
文摘Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.
基金This paper was supported by National Social Science Foundation of China(2019⁃SKJJ⁃035)。
文摘Safety risks are essential to the success or failure of the large⁃scale complex projects.In order to assess and evaluate the safety risks of the large⁃scale complex projects scientifically,a risk assessment method of work breakdown structure and risk breakdown structure(WBS⁃RBS)is proposed to identify the project risks.In this paper,interval numbers are used to evaluate the risk levels,weights are assigned automatically based on the complexity and risk degree of WBS to distinguish three types of nodes in WBS,and a risk assessment algorithm is designed to assess safety risk at all layers of the project.A case study is conducted to demonstrate how to apply the method.The results show the practicality,robustness and efficiency of our new method,which can be applied to different kinds of large⁃scale complex projects in reality.
文摘The SOD-like activities of SOD, four Cu(Ⅱ)Complexes, SOD-and Cu(Ⅱ)com-plex-liposomes were determined respectively by using cytochrome C method. The results showed that all of these systems had SOD-like activities to some extent of which the Cu(His)_2-liposome displayed the highest activity and the Cu(Ⅱ)complexes and liposomes had some positive cooperative action.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62071496, 61901530, and 62061008)the Innovation Project of Graduate of Central South University (Grant No. 2022zzts0681)。
文摘A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has different numbers of equilibria for different ranges of parameters. The dynamics of the proposed system is investigated by means of phase portraits, Lyapunov exponents, bifurcation diagrams, and basins of attraction. The results show abundant dynamical characteristics. Particularly, the phenomena of extreme multistability as well as hidden attractors are discovered. In addition, the complex generalized projective synchronization is implemented between two fractional-order hyperchaotic complex systems with different fractional orders. Based on the fractional Lyapunov stability theorem, the synchronization controllers are designed, and the theoretical results are verified and demonstrated by numerical simulations. It lays the foundation for practical applications of the proposed system.