The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The b...The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The boundary value method(BVM),based on the finite difference method(FDM),can be used to reconstruct the source wavefield in the reverse time propagation in the same way as the receiver wavefield,which can reduce the storage burden of the RTM data.Considering that the FDM cannot well handle models with discontinuous material properties and rough interfaces,we develop a source wavefield reconstruction strategy based on the finite element method(FEM),using proper orthogonal decomposition(POD)to enhance computational efficiency.In this method,we divide the whole time period into several segments,and construct the POD basis functions to get a reduced order model(ROM)for the source wavefield reconstruction in each segment.We show the corresponding quantitative analysis of the storage requirement of the POD-FEM.Numerical tests on the homogeneous model show the effectiveness of the proposed method,while the layered model and part of the Marmousi model tests indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory usage compared with the full-stored method(FSM)and the BVM,and can be effectively applied in imaging.展开更多
Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovati...Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovative form of the POD based on cross power spectral density matrices. By introducing a discretizing scheme, the CPOD-based spectral representation method is obtained for use in stochastic simulation. Moreover, some criteria are proposed that allow the truncation order of CPOD to be conveniently determined. A numerical example to illustrate the application of the proposed method for the simulation of a wind velocity field is provided.展开更多
Time-resolved particle image velocimetry(TRPIV) experiments are performed to investigate the coherent structure's performance of riblets in a turbulent boundary layer(TBL) at a friction Reynolds number of 185. To...Time-resolved particle image velocimetry(TRPIV) experiments are performed to investigate the coherent structure's performance of riblets in a turbulent boundary layer(TBL) at a friction Reynolds number of 185. To visualize the energetic large-scale coherent structures(CSs) over a smooth surface and riblets, the proper orthogonal decomposition(POD) and finite-time Lyapunov exponent(FTLE) are used to identify the CSs in the TBL. Spatial-temporal correlation is implemented to obtain the characters and transport properties of typical CSs in the FTLE fields. The results demonstrate that the generic flow structures, such as hairpin-like vortices, are also observed in the boundary layer flow over the riblets, consistent with its smooth counterpart. Low-order POD modes are more sensitive to the riblets in comparison with the high-order ones,and the wall-normal movement of the most energy-containing structures are suppressed over riblets. The spatial correlation analysis of the FTLE fields indicates that the evolution process of the hairpin vortex over riblets are inhibited. An apparent decrease of the convection velocity over riblets is noted, which is believed to reduce the ejection/sweep motions associated with high shear stress from the viscous sublayer. These reductions exhibit inhibition of momentum transfer among the structures near the wall in the TBL flows.展开更多
Since the empirical mode decomposition (EMD) lacks strict orthogonality, the method of orthogonal empirical mode decomposition (OEMD) is innovationally proposed. The primary thought of this method is to obtain the...Since the empirical mode decomposition (EMD) lacks strict orthogonality, the method of orthogonal empirical mode decomposition (OEMD) is innovationally proposed. The primary thought of this method is to obtain the intrinsic mode function (IMF) and the residual function by auto-adaptive band-pass filtering. OEMD is proved to preserve strict orthogonality and completeness theoretically, and the orthogonal basis function of OEMD is generated, then an algorithm to implement OEMD fast, IMF binary searching algorithm is built based on the point that the analytical band-pass filtering preserves perfect band-pass feature in the frequency domain. The application into harmonic detection shows that OEMD successfully conquers mode aliasing, avoids the occurrence of false mode, and is featured by fast computing speed. Furthermore, it can achieve harmonic detection accurately combined with the least square method.展开更多
The proper orthogonal decomposition (POD) method for the instationary Navier-Stokes equations is considered. Several numerical approaches to evaluating the POD eigenfunctions are presented. The POD eigenfunctions are ...The proper orthogonal decomposition (POD) method for the instationary Navier-Stokes equations is considered. Several numerical approaches to evaluating the POD eigenfunctions are presented. The POD eigenfunctions are applied as a basis for a Galerkin projection of the instationary Navier-Stokes equations. And a low-dimensional ordinary differential models for fluid flows governed by the instationary Navier-Stokes equations are constructed. The numerical examples show that the method is feasible and efficient for optimal control of fluids.展开更多
The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are base...The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption, valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes (N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation (DNS) results, the proposed model predicts flow dynamics (e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows.展开更多
A three-dimensional incompressible annular jet is simulated by the large eddy simulation(LES)method at a Reynolds number Re=8500.The time-averaged velocity field shows an asymmetric wake behind the central bluff-body ...A three-dimensional incompressible annular jet is simulated by the large eddy simulation(LES)method at a Reynolds number Re=8500.The time-averaged velocity field shows an asymmetric wake behind the central bluff-body although the flow geometry is symmetric.The proper orthogonal decomposition(POD)analysis of the velocity fluctuation vectors is conducted to study the flow dynamics of the wake flow.The distribution of turbulent kinetic energy across the three-dimensional POD modes shows that the first four eigenmodes each capture more than 1%of the turbulent kinetic energy,and hence their impact on the wake dynamics is studied.The results demonstrate that the asymmetric mean flow in the near-field of the annular jet is related to the first two POD modes which correspond to a radial shift of the stagnation point.The modes 3 and 4 involve the stretching or squeezing effects of the recirculation region in the radial direction.In addition,the spatial structure of these four POD eigenmodes also shows the counter-rotating vortices in the streamwise direction downstream of the flow reversal region.展开更多
Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and ill...Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and illustrates engineering of structures. Using the POD technique, it is shown that wind pressure data can be accurately reconstructed with a limited number of modes using the wind pressure data from wind tunnel test. Comparing the reconstructed values by POD with the original measured values from the wind tunnel test both in the time and frequency domains, it is concluded that the proper orthogonal decomposition(POD) is an efficient and practical technique for deriving the random wind pressure field from limited known data as shown in the pitched roof example in this paper.展开更多
Let f : Ω→Gr(n,H) be a holomorphic curve, where Ω is a bounded open simple connected domain on the complex plane C and Gr(n,H) the Grassmannian manifold. Denote by Ef the "pull back" bundle induced by f. We ...Let f : Ω→Gr(n,H) be a holomorphic curve, where Ω is a bounded open simple connected domain on the complex plane C and Gr(n,H) the Grassmannian manifold. Denote by Ef the "pull back" bundle induced by f. We show the uniqueness of the orthogonal decomposition for those complex bundles. As a direct application, we give a complete description of the HIR decomposition of a Cowen- Douglas operator T ∈ Bn(Ω). Moreover, we compute the maximal self-adjoint subalgebra of A'(Ef) and A'(T) respectively. Finally, we fix the masa of A'(Ef) and .A' (T) which depends on the HIR decomposition of Ef or T respectively.展开更多
For square contingency tables with ordered categories, this article proposes new models, which are the extension of Tomizawa’s [1] diagonal exponent symmetry model. Also it gives the decomposition of proposed model, ...For square contingency tables with ordered categories, this article proposes new models, which are the extension of Tomizawa’s [1] diagonal exponent symmetry model. Also it gives the decomposition of proposed model, and shows the orthogonality of the test statistics for decomposed models. Examples are given and the simulation studies based on the bivariate normal distribution are also given.展开更多
Application of micro-resonator is limited by different types of surface inhomogeneity. The 1-th derivative of inhomogeneity (i.e. Δrˊ(φ)) affects the wave transport as well as the height of inhomogeneity (i.e. Δr...Application of micro-resonator is limited by different types of surface inhomogeneity. The 1-th derivative of inhomogeneity (i.e. Δrˊ(φ)) affects the wave transport as well as the height of inhomogeneity (i.e. Δrˊ(φ)). A method based on orthogonal decomposition is proposed to analysis both scattering mechanism respectively. Then surface roughness effect on Q-factor of micro-disk waveguide gallery mode (WGM) resonator is investigated with our method and the analysis fits well with FDTD simulation results.展开更多
The purpose of this study is to describe an economical approach to an existing adaptive localization technique and its implementation in the proper orthogonal decomposition-based ensemble four-dimensional variational ...The purpose of this study is to describe an economical approach to an existing adaptive localization technique and its implementation in the proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method(PODEn4DVar). Owing to the applications of the sparse processing and EOF decomposition techniques, the computational costs of this proposed sparse flow-adaptive moderation(SFAM) localization scheme are significantly reduced. The effectiveness of PODEn4 DVar with SFAM localization is demonstrated by using the Lorenz-96 model in comparison with the Smoothed ENsemble Correlations Raised to a Power(SENCORP) and static localization schemes, separately. The performance of PODEn4 DVar with SFAM localization shows a moderate improvement over the schemes with SENCORP and static localization, with low computational costs under the imperfect model.展开更多
Over the recent years there has been an increased trend in the use of Reduced Order Models (ROM) for modeling the coupled aeroelastic system. Of all the ROM models, the Proper Orthogonal Decomposition Method (POD)...Over the recent years there has been an increased trend in the use of Reduced Order Models (ROM) for modeling the coupled aeroelastic system. Of all the ROM models, the Proper Orthogonal Decomposition Method (POD) has been the most widely used, reason being the relative simplicity of implementation and the physical insight that it offers towards the physical problem. In this paper we begin by briefly recalling the recent work using POD for the computational aeroelasticity followed by the mathematical formulation. Mathematical formulation is important as it provides understanding of how POD method works. Implementation issues related to the POD method are presented next. Since POD is an empirical technique therefore, it is marred by the robustness issues as is the case with all the ROMs. In the end the variations of POD method, developed over the years are presented along with the most recent trend of using hybrid ROM.展开更多
Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machi...Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis.展开更多
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl...A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.展开更多
The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into ...The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into dynamical modes.The vortex shedding pattern behind the trailing edge and its high-order harmonics have been captured with abundant information such as frequency,wavelength and convection speed.It is observed that high-order dynamic modes convect faster than low-order modes;moreover the wavelength of the dynamic modes scales with the corresponding frequency in power law.展开更多
Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
Two kinds of the empirical orthogonal function analysis method for decomposing the mean-field are developed and a comparison is made between them. It is proved that the mean-field can be decomposed using eigenvectors ...Two kinds of the empirical orthogonal function analysis method for decomposing the mean-field are developed and a comparison is made between them. It is proved that the mean-field can be decomposed using eigenvectors obtained from anomaly-field decomposition, and that more information can be obtained. An example of sea bottom mean temperature analysis shows its remarhabk effect in depicting the distribution features of variousfactors, such as cold water mass, currents and radiation.A few problems concerning the efficiency of the method are discussedand two matrices of relationship which represent the space-time characteristics of the field are derived. The formulae of space-time transformation are obtained conveniently.展开更多
The objective of this work is to reveal the effect of a passive control method called wedge-type cavitating-bubble generator(WCG)on the cloud cavitation dynamics of National Advisory Committee for Aeronautics(NACA)66 ...The objective of this work is to reveal the effect of a passive control method called wedge-type cavitating-bubble generator(WCG)on the cloud cavitation dynamics of National Advisory Committee for Aeronautics(NACA)66 hydrofoil.The simulations are performed using the Partially-averaged Navier-Stokes(PANS)method coupled with the Zwart cavitation model.The proper orthogonal decomposition(POD)method is applied to extract the dominant flow structures.The results show that the WCG can induce the attached cavity to occur just behind the WCG instead of the hydrofoil leading edge.During the periodical time-evolution process of the unsteady cavity,it is found that the attached cavity with a larger scale around the hydrofoil with WCG has a rougher surface,accompanied with more shedding behaviors of small cavities.This is further illustrated by the POD modes,that is,the mode 1 and modes 2–4 present the large and small cavity vortex structures respectively.Meanwhile,the dominant frequencies of 50 Hz,47.5 Hz are given by the POD method respectively for the hydrofoils without and with WCG,which is in good agreement with that of FFT analysis.In addition,the correlation distribution of POD modal coefficients shows that the WCG can strengthen the vortex energy as well as the turbulence intensity.展开更多
An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyc...An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyclic (CODC) if the cyclic group of order is a subgroup of the automorphism group of G. In this paper, we introduce a general orthogonal labelling for CODC of circulant graphs and construct CODC by certain classes of graphs such as complete bipartite graph, the union of the co-cycles graph with a star, the center vertex of which, belongs to the co-cycles graph and graphs that are connected by a one vertex.展开更多
基金This work was supported by Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-YB-269)the National Natural Science Foundation of China(Grant No.41974122).
文摘The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The boundary value method(BVM),based on the finite difference method(FDM),can be used to reconstruct the source wavefield in the reverse time propagation in the same way as the receiver wavefield,which can reduce the storage burden of the RTM data.Considering that the FDM cannot well handle models with discontinuous material properties and rough interfaces,we develop a source wavefield reconstruction strategy based on the finite element method(FEM),using proper orthogonal decomposition(POD)to enhance computational efficiency.In this method,we divide the whole time period into several segments,and construct the POD basis functions to get a reduced order model(ROM)for the source wavefield reconstruction in each segment.We show the corresponding quantitative analysis of the storage requirement of the POD-FEM.Numerical tests on the homogeneous model show the effectiveness of the proposed method,while the layered model and part of the Marmousi model tests indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory usage compared with the full-stored method(FSM)and the BVM,and can be effectively applied in imaging.
基金Research Fund for Communications in Western China Under Grant No. 200431800028
文摘Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovative form of the POD based on cross power spectral density matrices. By introducing a discretizing scheme, the CPOD-based spectral representation method is obtained for use in stochastic simulation. Moreover, some criteria are proposed that allow the truncation order of CPOD to be conveniently determined. A numerical example to illustrate the application of the proposed method for the simulation of a wind velocity field is provided.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11332006,11732010,11572221,and 11502066)the Natural Science Foundation of Tianjin City(Grant No.18JCQNJC5100)
文摘Time-resolved particle image velocimetry(TRPIV) experiments are performed to investigate the coherent structure's performance of riblets in a turbulent boundary layer(TBL) at a friction Reynolds number of 185. To visualize the energetic large-scale coherent structures(CSs) over a smooth surface and riblets, the proper orthogonal decomposition(POD) and finite-time Lyapunov exponent(FTLE) are used to identify the CSs in the TBL. Spatial-temporal correlation is implemented to obtain the characters and transport properties of typical CSs in the FTLE fields. The results demonstrate that the generic flow structures, such as hairpin-like vortices, are also observed in the boundary layer flow over the riblets, consistent with its smooth counterpart. Low-order POD modes are more sensitive to the riblets in comparison with the high-order ones,and the wall-normal movement of the most energy-containing structures are suppressed over riblets. The spatial correlation analysis of the FTLE fields indicates that the evolution process of the hairpin vortex over riblets are inhibited. An apparent decrease of the convection velocity over riblets is noted, which is believed to reduce the ejection/sweep motions associated with high shear stress from the viscous sublayer. These reductions exhibit inhibition of momentum transfer among the structures near the wall in the TBL flows.
基金National Natural Science Foundation of China(No.50575233)
文摘Since the empirical mode decomposition (EMD) lacks strict orthogonality, the method of orthogonal empirical mode decomposition (OEMD) is innovationally proposed. The primary thought of this method is to obtain the intrinsic mode function (IMF) and the residual function by auto-adaptive band-pass filtering. OEMD is proved to preserve strict orthogonality and completeness theoretically, and the orthogonal basis function of OEMD is generated, then an algorithm to implement OEMD fast, IMF binary searching algorithm is built based on the point that the analytical band-pass filtering preserves perfect band-pass feature in the frequency domain. The application into harmonic detection shows that OEMD successfully conquers mode aliasing, avoids the occurrence of false mode, and is featured by fast computing speed. Furthermore, it can achieve harmonic detection accurately combined with the least square method.
基金National Natural Science Foundation of China (No.10671153)
文摘The proper orthogonal decomposition (POD) method for the instationary Navier-Stokes equations is considered. Several numerical approaches to evaluating the POD eigenfunctions are presented. The POD eigenfunctions are applied as a basis for a Galerkin projection of the instationary Navier-Stokes equations. And a low-dimensional ordinary differential models for fluid flows governed by the instationary Navier-Stokes equations are constructed. The numerical examples show that the method is feasible and efficient for optimal control of fluids.
基金Project supported by the National Natural Science Foundation of China(Nos.11232011,11402262,11572314,and 11621202)
文摘The reduced-order model (ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition (POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption, valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes (N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation (DNS) results, the proposed model predicts flow dynamics (e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows.
文摘A three-dimensional incompressible annular jet is simulated by the large eddy simulation(LES)method at a Reynolds number Re=8500.The time-averaged velocity field shows an asymmetric wake behind the central bluff-body although the flow geometry is symmetric.The proper orthogonal decomposition(POD)analysis of the velocity fluctuation vectors is conducted to study the flow dynamics of the wake flow.The distribution of turbulent kinetic energy across the three-dimensional POD modes shows that the first four eigenmodes each capture more than 1%of the turbulent kinetic energy,and hence their impact on the wake dynamics is studied.The results demonstrate that the asymmetric mean flow in the near-field of the annular jet is related to the first two POD modes which correspond to a radial shift of the stagnation point.The modes 3 and 4 involve the stretching or squeezing effects of the recirculation region in the radial direction.In addition,the spatial structure of these four POD eigenmodes also shows the counter-rotating vortices in the streamwise direction downstream of the flow reversal region.
基金Acknowledgements The authors are grateful for the support of this research by the Committee of National Science Foundation of China (50908077) and Foundation of Heilongjiang Province Educational Committee (11551368).
文摘Proper orthogonal decomposition (POD) is an effective statistical technique for data reduction and feature extraction of the random field including the wind field. This paper introduces the theory of the POD and illustrates engineering of structures. Using the POD technique, it is shown that wind pressure data can be accurately reconstructed with a limited number of modes using the wind pressure data from wind tunnel test. Comparing the reconstructed values by POD with the original measured values from the wind tunnel test both in the time and frequency domains, it is concluded that the proper orthogonal decomposition(POD) is an efficient and practical technique for deriving the random wind pressure field from limited known data as shown in the pitched roof example in this paper.
文摘Let f : Ω→Gr(n,H) be a holomorphic curve, where Ω is a bounded open simple connected domain on the complex plane C and Gr(n,H) the Grassmannian manifold. Denote by Ef the "pull back" bundle induced by f. We show the uniqueness of the orthogonal decomposition for those complex bundles. As a direct application, we give a complete description of the HIR decomposition of a Cowen- Douglas operator T ∈ Bn(Ω). Moreover, we compute the maximal self-adjoint subalgebra of A'(Ef) and A'(T) respectively. Finally, we fix the masa of A'(Ef) and .A' (T) which depends on the HIR decomposition of Ef or T respectively.
文摘For square contingency tables with ordered categories, this article proposes new models, which are the extension of Tomizawa’s [1] diagonal exponent symmetry model. Also it gives the decomposition of proposed model, and shows the orthogonality of the test statistics for decomposed models. Examples are given and the simulation studies based on the bivariate normal distribution are also given.
文摘Application of micro-resonator is limited by different types of surface inhomogeneity. The 1-th derivative of inhomogeneity (i.e. Δrˊ(φ)) affects the wave transport as well as the height of inhomogeneity (i.e. Δrˊ(φ)). A method based on orthogonal decomposition is proposed to analysis both scattering mechanism respectively. Then surface roughness effect on Q-factor of micro-disk waveguide gallery mode (WGM) resonator is investigated with our method and the analysis fits well with FDTD simulation results.
基金partially supported by the National High Technology Research and Development Program of China (Grant No. 2013AA122002)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2EW-QN207)the Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201306045)
文摘The purpose of this study is to describe an economical approach to an existing adaptive localization technique and its implementation in the proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method(PODEn4DVar). Owing to the applications of the sparse processing and EOF decomposition techniques, the computational costs of this proposed sparse flow-adaptive moderation(SFAM) localization scheme are significantly reduced. The effectiveness of PODEn4 DVar with SFAM localization is demonstrated by using the Lorenz-96 model in comparison with the Smoothed ENsemble Correlations Raised to a Power(SENCORP) and static localization schemes, separately. The performance of PODEn4 DVar with SFAM localization shows a moderate improvement over the schemes with SENCORP and static localization, with low computational costs under the imperfect model.
文摘Over the recent years there has been an increased trend in the use of Reduced Order Models (ROM) for modeling the coupled aeroelastic system. Of all the ROM models, the Proper Orthogonal Decomposition Method (POD) has been the most widely used, reason being the relative simplicity of implementation and the physical insight that it offers towards the physical problem. In this paper we begin by briefly recalling the recent work using POD for the computational aeroelasticity followed by the mathematical formulation. Mathematical formulation is important as it provides understanding of how POD method works. Implementation issues related to the POD method are presented next. Since POD is an empirical technique therefore, it is marred by the robustness issues as is the case with all the ROMs. In the end the variations of POD method, developed over the years are presented along with the most recent trend of using hybrid ROM.
基金supported by Fundamental Research Funds for the Central Universities of China (Grant No. CDJZR10118801)
文摘Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis.
基金The National Natural Science Foundation of China (No.61374194)
文摘A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.
基金supported by National Natural Science Foundation of China(Grant No.10832001)Vision Foundation of Beijing University of Aeronautics and Astronautics (Grant No.YWF-10-20-003)
文摘The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into dynamical modes.The vortex shedding pattern behind the trailing edge and its high-order harmonics have been captured with abundant information such as frequency,wavelength and convection speed.It is observed that high-order dynamic modes convect faster than low-order modes;moreover the wavelength of the dynamic modes scales with the corresponding frequency in power law.
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.
文摘Two kinds of the empirical orthogonal function analysis method for decomposing the mean-field are developed and a comparison is made between them. It is proved that the mean-field can be decomposed using eigenvectors obtained from anomaly-field decomposition, and that more information can be obtained. An example of sea bottom mean temperature analysis shows its remarhabk effect in depicting the distribution features of variousfactors, such as cold water mass, currents and radiation.A few problems concerning the efficiency of the method are discussedand two matrices of relationship which represent the space-time characteristics of the field are derived. The formulae of space-time transformation are obtained conveniently.
基金Project supported by the National Natural Science Foundation of China(Grant No.52076108).
文摘The objective of this work is to reveal the effect of a passive control method called wedge-type cavitating-bubble generator(WCG)on the cloud cavitation dynamics of National Advisory Committee for Aeronautics(NACA)66 hydrofoil.The simulations are performed using the Partially-averaged Navier-Stokes(PANS)method coupled with the Zwart cavitation model.The proper orthogonal decomposition(POD)method is applied to extract the dominant flow structures.The results show that the WCG can induce the attached cavity to occur just behind the WCG instead of the hydrofoil leading edge.During the periodical time-evolution process of the unsteady cavity,it is found that the attached cavity with a larger scale around the hydrofoil with WCG has a rougher surface,accompanied with more shedding behaviors of small cavities.This is further illustrated by the POD modes,that is,the mode 1 and modes 2–4 present the large and small cavity vortex structures respectively.Meanwhile,the dominant frequencies of 50 Hz,47.5 Hz are given by the POD method respectively for the hydrofoils without and with WCG,which is in good agreement with that of FFT analysis.In addition,the correlation distribution of POD modal coefficients shows that the WCG can strengthen the vortex energy as well as the turbulence intensity.
文摘An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyclic (CODC) if the cyclic group of order is a subgroup of the automorphism group of G. In this paper, we introduce a general orthogonal labelling for CODC of circulant graphs and construct CODC by certain classes of graphs such as complete bipartite graph, the union of the co-cycles graph with a star, the center vertex of which, belongs to the co-cycles graph and graphs that are connected by a one vertex.