The observations of varying broad iron lines during the state transition of the black hole X-ray binaries have been accumulating.In this work,the relation between the normalized intensity and the width of iron lines i...The observations of varying broad iron lines during the state transition of the black hole X-ray binaries have been accumulating.In this work,the relation between the normalized intensity and the width of iron lines is investigated,in order to understand better the variation of iron lines and possibly its connection to state transition.Considering the uncertainties due to ionization and illuminating X-rays,only the effects of geometry and gravity are taken into account.Three scenarios were studied,i.e.,the continuous disk model,the innermost annulus model,and the cloud model.As shown by our calculations,at given iron width,the line flux of the cloud model is smaller than that of the continuous disk model;while for the innermost annulus model,the width is almost unrelated with the flux.The range of the line strength depends on both the BH spin and the inclination of the disk.We then apply to the observation of MAXI J1631-479 by Nuclear Spectroscopic Telescope Array during its decay from the soft state to the intermediate state.We estimated the relative line strength and width according to the spectral fitting results in Xu et al.,and then compared with our theoretical width-flux relation.It was found that the cloud model was more favored.We further modeled the iron line profiles,and found that the cloud model can explain both the line profile and its variation with reasonable parameters.展开更多
The power law and reflection emission have been observed in the X-ray spectra of both black hole X-ray binaries(BHXRBs)and active galactic nuclei(AGNs),indicating a common physical origin of the X-ray emission from th...The power law and reflection emission have been observed in the X-ray spectra of both black hole X-ray binaries(BHXRBs)and active galactic nuclei(AGNs),indicating a common physical origin of the X-ray emission from these two types of sources.The relevant parameters describing the shape of both components and the potential correlation between these parameters can provide important clues on the geometric and physical properties of the disk and the corona in these sources.In this work,we present a positive correlation between the photon indexΓand the reflection strength R for the low-mass BHXRBs in the hard state by modeling NuSTAR data,which is qualitatively consistent with the previous studies.We compare our results with the predictions from different theoretical disk-corona models.We show that the RIT correlation found in this work seems to favor the moving corona model proposed by Beloborodov.Our results indicate that the coronal geometry varies significantly among BHXRBs.We further compare our results with that of AGNs.We find that the reflection strength R is smaller than unity in the hard state of BHXRBs,while it can be as large as~5 in AGNs,which implies that the variations of the disk-coronal geometry of AGNs are more vigorous than that of the BHXRBs in the hard state.展开更多
In accreting neutron star (NS) low-mass X-ray binaries (LMXBs), the turbulent flow in accretion disk may show magnetic structures. Its emission will vary in time due to inhomogeneous motions through and with the accre...In accreting neutron star (NS) low-mass X-ray binaries (LMXBs), the turbulent flow in accretion disk may show magnetic structures. Its emission will vary in time due to inhomogeneous motions through and with the accretion flow. These emissions contribute to considerable X-ray variability on a wide range of timescales in all wavelengths, and down to milliseconds. In this article, we give a brief review for quasi-periodic oscillations (QPOs), one of a periodic X-ray variability, in NS/ LMXBs. Firstly, we give a brief introduction to NS/LMXBs and the fruitful QPO components. As an example, the energy dependence of normal branch oscillations in Scorpius X-1 is discussed. We mostly focus on the properties and mechanism of kilohertz QPOs—the fastest variability components that have the same order as the dynamical timescales of the innermost regions of accretion flow. Finally, we discuss the success and questions for theoretical interpretations and present the possible entry for investigation of nature of QPOs.展开更多
We have investigated the relation between the orbital period P<SUB>orb</SUB> and the spin period P<SUB>s</SUB> of neutron stars in OB/X-ray binaries. By simulating the time-development of the m...We have investigated the relation between the orbital period P<SUB>orb</SUB> and the spin period P<SUB>s</SUB> of neutron stars in OB/X-ray binaries. By simulating the time-development of the mass loss rate and radius expansion of a 20M<SUB>☉</SUB> donor star, we have calculated the detailed spin evolution of the neutron star before steady wind accretion occurs (that is, when the break spin period is reached), or when the OB star begins evolving off the main sequence or has filled its Roche lobe. Our results are compatible with the observations of OB/X-ray binaries. We find that in relatively narrow systems with orbital periods less than tens of days, neutron stars with initial magnetic field B<SUB>0</SUB> stronger than about 3×10<SUP>12</SUP> G can reach the break spin period to allow steady wind accretion in the main sequence time, whereas neutron stars with B<SUB>0</SUB> < 3×10<SUP>12</SUP> G and/or in wide systems would still be in one of the pulsar, rapid rotator or propeller phases when the companion evolves off the main sequence or fills its Roche lobe. Our results may help understand the various characteristics of the observed OB/neutron star binaries along with their distributions in the P<SUB>s</SUB>-P<SUB>orb</SUB> diagram.展开更多
Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnet...Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnetars are in binaries has not been excluded. In this work, we perform spin evolution of neutron stars with different magnetic fields in wind-fed high-mass X-ray binaries and compare the spin period distribution with observations, aiming to find magnetars in binaries. Our simulation shows that some of the neutron stars, which have long spin periods or are in widely-separated systems, need strong magnetic fields to explain their spin evolution. This implies that there are probably magnetars in high-mass X-ray binaries. Moreover, this can further provide a theoretical basis for some unclear astronomical phenomena, such as the possible origin of periodic fast radio bursts from magnetars in binary systems.展开更多
Using the apparent correlation of luminosity(L;) versus displacement(R) of high mass X-ray binaries(HMXBs),we aim to constrain the common envelope(CE) mechanism, which is vital in the formation and evolution of compac...Using the apparent correlation of luminosity(L;) versus displacement(R) of high mass X-ray binaries(HMXBs),we aim to constrain the common envelope(CE) mechanism, which is vital in the formation and evolution of compact binaries. We find that under the assumption of the γ-algorithm, the apparent correlation can also be reconstructed generally within a reasonable range of key parameters adopted, though the population of HMXBs is distinct with that in the canonical αCE-formalism. We compare the spatial distribution of HMXBs under the two CE mechanisms, and suggest the difference in L;versus R distribution may provide an additional clue for the study of the CE phase and to discriminate between CE models.展开更多
We consider the existence of a neutron star magnetic field by the detected cyclotron lines. We collected data on nine sources of high-mass X-ray binaries with supergiant companions as a test case for our model, to dem...We consider the existence of a neutron star magnetic field by the detected cyclotron lines. We collected data on nine sources of high-mass X-ray binaries with supergiant companions as a test case for our model, to demonstrate their distribution and evolution. The wind velocity, spin period and magnetic field strength are studied under different mass loss rates. In our model, correlations between mass-loss rate and wind velocity are found and can be tested in further observations. We examine the parameter space where wind accretion is allowed, avoiding the barrier of rotating magnetic fields, with robust data on the magnetic field of neutron stars. Our model shows that most sources(six of nine systems) can be fed by the wind with relatively slow velocity, and this result is consistent with previous predictions. In a few sources,our model cannot fit the standard wind accretion scenario. In these peculiar cases, other scenarios(disk formation, partial Roche lobe overflow) should be considered. This would provide information about the evolutionary tracks of various types of binaries, and thus exhibit a clear dichotomy behavior in wind-fed X-ray binary systems.展开更多
We searched for long period variation in V-band, It-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698 / RX J1037.5-5647, HD 110432 / 1H 1249-637 and HD 161103 / RX J1744.7-2713 in an a...We searched for long period variation in V-band, It-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698 / RX J1037.5-5647, HD 110432 / 1H 1249-637 and HD 161103 / RX J1744.7-2713 in an attempt to discover orbitally induced variation. Data were obtained primarily from the ASAS database and were supplemented by shorter term observations made with the 24- and 40-inch ANU telescopes and one of the robotic PROMPT telescopes. Fourier periodograms suggested the existence of long period variation in the V-band light curves of all three HMXBs, however folding the data at those periods did not reveal convincing periodic variation. At this point we cannot rule out the existence of long term V-band variation for these three sources and hints of longer term variation may be seen in the higher precision PROMPT data. Long term V-band observations, on the order of several years, taken at a frequency of at least once per week and with a precision of 0.01 mag, therefore still have a chance of revealing long term variation in these three HMXBs.展开更多
The radiative mechanism of black hole X-ray transients (BHXTs) in their quiescent states (defined as the 2-10 keV X-ray luminosity ≤ 10^34 erg s-1) remains unclear. In this work, we investigate the quasi-simultan...The radiative mechanism of black hole X-ray transients (BHXTs) in their quiescent states (defined as the 2-10 keV X-ray luminosity ≤ 10^34 erg s-1) remains unclear. In this work, we investigate the quasi-simultaneous quiescent state spectrum (including radio, infrared, optical, ultraviolet and X-ray) of two BHXTs, A0620-00 and XTE J1118+480. We find that these two sources can be well described by a coupled accretion - jet model. More specifically, most of the emission (radio up to infrared, and the X-ray waveband) comes from the collimated relativistic jet. Emission from hot accretion flow is totally insignificant, and it can only be observed in mid-infrared (the synchrotron peak). Emission from the outer cold disk is only evident in the UV band. These results are consistent with our previous investigation on the quiescent state of V404 Cyg and confirm that the quiescent state is jet-dominated.展开更多
We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curv...We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curves of seven pulsars: four HMXBPs, two MSBPs and the ultraluminous X-ray pulsar M82 X-2. We discuss the physics of their flaring activities or lack thereof, paying special attention to their emission properties when they are found on the propeller line, inside the Corbet gap or near the light-cylinder barrier. We provide guiding principles for future interpretations of faint X-ray observations, as well as a method of constraining the propeller lines and the dipolar surface magnetic fields of pulsars using a variety of quiescent states. In the process, we clarify some disturbing inaccuracies that have made their way into the published literature.展开更多
Ultra-compact X-ray binaries (UCXBs) are very interesting and impor- tant objects. By taking the population synthesis approach to the evolution of binaries, we carry out a detailed study of UCXBs. We estimate that t...Ultra-compact X-ray binaries (UCXBs) are very interesting and impor- tant objects. By taking the population synthesis approach to the evolution of binaries, we carry out a detailed study of UCXBs. We estimate that there are - 5000-10000 UCXBs in the Galaxy, and their birthrates are - 2.6-7.5×10-4 yr-1. Most UCXBs are transient X-ray sources, but their X-ray luminosities are much lower than those of persistent sources. Therefore, the majority of observed UCXBs should be persistent sources. About 40% - 70% of neutron stars (NSs) in UCXBs form via an accretion- induced collapse from an accreting ONe white dwarf (WD), 1%-10% of NSs in UCXBs form via core-collapse supernovae and others form via the evolution-induced collapse of a naked helium star. About 50% - 80% of UCXBs have naked helium star donors, 5% - 10% of UCXBs have HeWD donors, 15% - 40% of UCXBs have COWD donors and UCXBs with ONeWD indicates that the uncertainty mainly comes which develops in these systems. donors are negligible. Our investigation from evolution of the common-envelope展开更多
A low mass X-ray binary (LMXB) contains either a neutron star or a black hole accreting materials from its low mass companion star. It is one of the primary astrophysical sources for studying stellar-mass compact ob...A low mass X-ray binary (LMXB) contains either a neutron star or a black hole accreting materials from its low mass companion star. It is one of the primary astrophysical sources for studying stellar-mass compact objects and accreting phe- nomena. As with other binary systems, the most important parameter of an LMXB is the orbital period, which allows us to learn about the nature of the binary system and constrain the properties of the system's components, including the compact ob- ject. As a result, measuring the orbital periods of LMXBs is essential for investigating these systems even though fewer than half of them have known orbital periods. This article introduces the different methods for measuring the orbital periods in the X-ray band and reviews their application to various types of LMXBs, such as eclipsing and dipping sources, as well as pulsar LMXBs.展开更多
We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems. For the accreting compact object we consider the initial mass of 1.4, 10, 20, 100, 200, 500 and 1000 Mo, corresponding to n...We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems. For the accreting compact object we consider the initial mass of 1.4, 10, 20, 100, 200, 500 and 1000 Mo, corresponding to neutron stars (NSs), stellar- mass black holes (BHs) and intermediate-mass BHs. Mass transfer in these binaries is driven by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking and gravitational wave radiation. For the different systems, we determine their bifurcation periods Pbif that separate the formation of converging systems from the diverging ones, and show that Pbif changes from ~ 1 d to ≥ 3 d for a 1 Mo donor star, with increasing initial accretor mass from 1.4 to 1000 Mo. This means that the dominant mechanism of orbital angular momentum loss changes from magnetic braking to gravitational radiation. As an illustration we compare the evolution of binaries consisting of a secondary star of 1 Mo at a fixed initial period of 2 d. In the case of the NS or stellar-mass BH accretor, the system evolves to a well-detached He white dwarf-neutron star/black hole pair, but it evolves to an ultra- compact binary if the compact object is an intermediate-mass BH. Thus the binary evolution heavily depends upon the mass of the compact object. However, we show that the final orbital period-white dwarf mass relation found for NS low-mass X-ray binaries is fairly insensitive to the initial mass of the accreting star, even if it is an intermediate-mass BH.展开更多
We have studied X-ray spectral state transitions that can be seen in the long- term monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) an...We have studied X-ray spectral state transitions that can be seen in the long- term monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) and the Burst Alert Telescope (BAT) onboard Swift during a period of five years from 2005 to 2010. We have applied a program to automatically identify the hard-to-soft (H-S) spectral state transitions in the bright X-ray binaries monitored by the ASM and the BAT. In total, we identified 128 hard-to-soft transitions, of which 59 occurred after 2008. We also determined the transition fluxes and the peak fluxes of the following soft states, updated the measurements of the luminosity corresponding to the H-S transition and the peak luminosity of the following soft state in about 30 bright persistent and transient black hole and neutron star binaries following Yu &Yan, and found the luminosity correlation and the luminosity range of spectral transitions in data between 2008-2010 are about the same as those derived from data before 2008. This further strengthens the idea that the luminosity at which the H-S spectral transition occurs in the Galactic X-ray binaries is determined by non-stationary accretion parameters such as the rate-of-change of the mass accretion rate rather than the mass accretion rate itself. The correlation is also found to hold in data of individual sources 4U 1608-52 and 4U 1636-53.展开更多
By simulating the evolution of spin periods of magnetized neutron stars which interact with their environment in binary systems,we investigate the Galactic population of high mass X-ray binaries(HMXBs) .The number o...By simulating the evolution of spin periods of magnetized neutron stars which interact with their environment in binary systems,we investigate the Galactic population of high mass X-ray binaries(HMXBs) .The number of HMXBs in the Galaxy is between 190 and 240,and their birthrate is from 5.9×10-5 yr-1 to 6.3× 10-5 yr-1.Comparing the Corbet diagram(the positions of the spin periods vs.the orbital periods of HMXBs) in our model with the associated observations,we find that the stellar wind structure and the process of matter transfer are very important for understanding HMXBs.展开更多
We adopt the tidal truncation model proposed by Negueruela and Okazaki for Be/X-ray binaries to investigate the influence of intermediate-mass black holes (IMBHs) on Be-star disks. We show that the viscous decretion...We adopt the tidal truncation model proposed by Negueruela and Okazaki for Be/X-ray binaries to investigate the influence of intermediate-mass black holes (IMBHs) on Be-star disks. We show that the viscous decretion disks around Be stars are generally truncated ineffectively under the tidal force of IMBHs. Combining this with observations of Be/X-ray binaries, we suggest that Be/IMBH X-ray binaries may appear as recurrent luminous X-ray transients with quasi-periodic X-ray outbursts.展开更多
Using recent compilations of detailed X-ray observations and spectral models of exceptional quality, we record the electron cyclotron resonance absorption(ECRA) features that have been detected in 45 pulsating high-ma...Using recent compilations of detailed X-ray observations and spectral models of exceptional quality, we record the electron cyclotron resonance absorption(ECRA) features that have been detected in 45 pulsating high-mass X-ray binaries(HMXBs) and ultraluminous X-ray(ULX) sources harboring neutron stars, although seven of these detections are still questionable and another 21 are single and/or not independently confirmed. From the comprehensive catalogs of Jaisawal & Naik and Staubert et al.and from several additional recent observations, we produce two lists of HMXB ECRA sources: a list of 17 sources in which multiple ECRA lines or single very low-energy lines are seen, in which we can reasonably assume that the lowest energy reveals the fundamental cyclotron level for each source;and a"contaminated" list of 38 sources including the 21 detections of single ECRA lines that may(not) be higherlevel harmonics. Both lists confirm a previous result that we have obtained independently by modeling the propeller lines of Magellanic HMXB pulsars: the surface dipolar magnetic fields B*of HMXB neutron stars are segregated around five distinct values with B*= 0.28 ± 0.08, 0.55 ± 0.11, 1.3 ± 0.37, 3.0 ± 0.68 and 7.9 ± 3.1, in units of TG. However, an explanation of this phenomenon is currently lacking. We have found no correlation between these B*values and the corresponding observed spin periods, spin period derivatives, orbital periods, maximum X-ray luminosities, neutron star masses or companion star masses.展开更多
A model for the low/hard (LH) state associated with a steady jet in black hole X-ray binaries (BHXBs) is proposed based on disc-corona model with open magnetic fields trapped in magnetic patches, which arises from ‘f...A model for the low/hard (LH) state associated with a steady jet in black hole X-ray binaries (BHXBs) is proposed based on disc-corona model with open magnetic fields trapped in magnetic patches, which arises from ‘flux expulsion’ effect of convective turbulence. We fit the spectral profiles of the LH state for the BHXBs, 4U 1543-475, GX 339-4, XTE J1550-564 and GRO J1655-40, and fit the relation between jet power and X-ray luminosity dynamically in the LH state by adjusting accretion rate and the outer boundary of the corona over the disc.展开更多
Previous works suggested that the state transitions in an X-ray binary can be triggered by accret- ing an inverse magnetic field from its companion star. A key point of this mechanism is the accretion and magnificatio...Previous works suggested that the state transitions in an X-ray binary can be triggered by accret- ing an inverse magnetic field from its companion star. A key point of this mechanism is the accretion and magnification of large-scale magnetic fields from the outer boundary of a thin disk. However, how such a process can be realized is still an open question. In this work, we check this issue in a realistic X-ray binary system. According to our calculations, a quite strong initial magnetic field, B - 10^2 - 10^3 G, is required in order to assure that the large-scale magnetic field can be effectively dragged inward and magnified with the accretion of gas. Thus, such a picture probably can be present in high-mass X-ray binaries possessing a strong stellar magnetic field, e.g., Cyg X-1.展开更多
There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence. We consider the condition for mass ejection by comparing the radiation pre...There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence. We consider the condition for mass ejection by comparing the radiation pressure from a millisecond pulsar, and the gas pressure at the inner Lagrange point or at the surrounding accretion disk. We calculate the critical spin period of the pulsar below which mass ejection is allowed. Combining with the evolution of the mass transfer rate, we present constraints on the orbital periods of the systems. We show that mass ejection could happen in both wide and compact LMXBs. It may be caused by transient accretion due to thermal instability in the accretion disks in the former, and irradiation-driven mass-transfer cycles in the latter.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.U2038108,12192220,12192223 and 12133008the National SKA Program of China(No.2020SKA0110102)supported in part by the Youth Innovation Promotion Association of CAS(Y202064)。
文摘The observations of varying broad iron lines during the state transition of the black hole X-ray binaries have been accumulating.In this work,the relation between the normalized intensity and the width of iron lines is investigated,in order to understand better the variation of iron lines and possibly its connection to state transition.Considering the uncertainties due to ionization and illuminating X-rays,only the effects of geometry and gravity are taken into account.Three scenarios were studied,i.e.,the continuous disk model,the innermost annulus model,and the cloud model.As shown by our calculations,at given iron width,the line flux of the cloud model is smaller than that of the continuous disk model;while for the innermost annulus model,the width is almost unrelated with the flux.The range of the line strength depends on both the BH spin and the inclination of the disk.We then apply to the observation of MAXI J1631-479 by Nuclear Spectroscopic Telescope Array during its decay from the soft state to the intermediate state.We estimated the relative line strength and width according to the spectral fitting results in Xu et al.,and then compared with our theoretical width-flux relation.It was found that the cloud model was more favored.We further modeled the iron line profiles,and found that the cloud model can explain both the line profile and its variation with reasonable parameters.
基金funded by the National Aeronautics and Space Administrationsupported by the National Natural Science Foundation of China(11833007,12073023,12233007,and 12147103)+1 种基金the science research grants from the China Manned Space Project with No.CMS-CSST-2021-A06the fundamental research fund for Chinese central universities(Zhejiang University)。
文摘The power law and reflection emission have been observed in the X-ray spectra of both black hole X-ray binaries(BHXRBs)and active galactic nuclei(AGNs),indicating a common physical origin of the X-ray emission from these two types of sources.The relevant parameters describing the shape of both components and the potential correlation between these parameters can provide important clues on the geometric and physical properties of the disk and the corona in these sources.In this work,we present a positive correlation between the photon indexΓand the reflection strength R for the low-mass BHXRBs in the hard state by modeling NuSTAR data,which is qualitatively consistent with the previous studies.We compare our results with the predictions from different theoretical disk-corona models.We show that the RIT correlation found in this work seems to favor the moving corona model proposed by Beloborodov.Our results indicate that the coronal geometry varies significantly among BHXRBs.We further compare our results with that of AGNs.We find that the reflection strength R is smaller than unity in the hard state of BHXRBs,while it can be as large as~5 in AGNs,which implies that the variations of the disk-coronal geometry of AGNs are more vigorous than that of the BHXRBs in the hard state.
文摘In accreting neutron star (NS) low-mass X-ray binaries (LMXBs), the turbulent flow in accretion disk may show magnetic structures. Its emission will vary in time due to inhomogeneous motions through and with the accretion flow. These emissions contribute to considerable X-ray variability on a wide range of timescales in all wavelengths, and down to milliseconds. In this article, we give a brief review for quasi-periodic oscillations (QPOs), one of a periodic X-ray variability, in NS/ LMXBs. Firstly, we give a brief introduction to NS/LMXBs and the fruitful QPO components. As an example, the energy dependence of normal branch oscillations in Scorpius X-1 is discussed. We mostly focus on the properties and mechanism of kilohertz QPOs—the fastest variability components that have the same order as the dynamical timescales of the innermost regions of accretion flow. Finally, we discuss the success and questions for theoretical interpretations and present the possible entry for investigation of nature of QPOs.
基金Supported by the National Natural Science Foundation of China.
文摘We have investigated the relation between the orbital period P<SUB>orb</SUB> and the spin period P<SUB>s</SUB> of neutron stars in OB/X-ray binaries. By simulating the time-development of the mass loss rate and radius expansion of a 20M<SUB>☉</SUB> donor star, we have calculated the detailed spin evolution of the neutron star before steady wind accretion occurs (that is, when the break spin period is reached), or when the OB star begins evolving off the main sequence or has filled its Roche lobe. Our results are compatible with the observations of OB/X-ray binaries. We find that in relatively narrow systems with orbital periods less than tens of days, neutron stars with initial magnetic field B<SUB>0</SUB> stronger than about 3×10<SUP>12</SUP> G can reach the break spin period to allow steady wind accretion in the main sequence time, whereas neutron stars with B<SUB>0</SUB> < 3×10<SUP>12</SUP> G and/or in wide systems would still be in one of the pulsar, rapid rotator or propeller phases when the companion evolves off the main sequence or fills its Roche lobe. Our results may help understand the various characteristics of the observed OB/neutron star binaries along with their distributions in the P<SUB>s</SUB>-P<SUB>orb</SUB> diagram.
基金Supported by the National Natural Science Foundation of China。
文摘Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnetars are in binaries has not been excluded. In this work, we perform spin evolution of neutron stars with different magnetic fields in wind-fed high-mass X-ray binaries and compare the spin period distribution with observations, aiming to find magnetars in binaries. Our simulation shows that some of the neutron stars, which have long spin periods or are in widely-separated systems, need strong magnetic fields to explain their spin evolution. This implies that there are probably magnetars in high-mass X-ray binaries. Moreover, this can further provide a theoretical basis for some unclear astronomical phenomena, such as the possible origin of periodic fast radio bursts from magnetars in binary systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11573021, U1938104, and 12003020)the Fundamental Research Funds for the Central UniversitiesNational High Performance Computing Center (Xi’an)。
文摘Using the apparent correlation of luminosity(L;) versus displacement(R) of high mass X-ray binaries(HMXBs),we aim to constrain the common envelope(CE) mechanism, which is vital in the formation and evolution of compact binaries. We find that under the assumption of the γ-algorithm, the apparent correlation can also be reconstructed generally within a reasonable range of key parameters adopted, though the population of HMXBs is distinct with that in the canonical αCE-formalism. We compare the spatial distribution of HMXBs under the two CE mechanisms, and suggest the difference in L;versus R distribution may provide an additional clue for the study of the CE phase and to discriminate between CE models.
基金the Abdul Hamed Shoman Foundation (Grant No. 6/2017) for supporting this projectsupported by the JSPS KAKENHI (Grant No. 18K03706)+1 种基金supported by the National Key R&D Program of China (2016YFA0400801)the National Natural Science Foundation of China (Grant No. U1838201)
文摘We consider the existence of a neutron star magnetic field by the detected cyclotron lines. We collected data on nine sources of high-mass X-ray binaries with supergiant companions as a test case for our model, to demonstrate their distribution and evolution. The wind velocity, spin period and magnetic field strength are studied under different mass loss rates. In our model, correlations between mass-loss rate and wind velocity are found and can be tested in further observations. We examine the parameter space where wind accretion is allowed, avoiding the barrier of rotating magnetic fields, with robust data on the magnetic field of neutron stars. Our model shows that most sources(six of nine systems) can be fed by the wind with relatively slow velocity, and this result is consistent with previous predictions. In a few sources,our model cannot fit the standard wind accretion scenario. In these peculiar cases, other scenarios(disk formation, partial Roche lobe overflow) should be considered. This would provide information about the evolutionary tracks of various types of binaries, and thus exhibit a clear dichotomy behavior in wind-fed X-ray binary systems.
文摘We searched for long period variation in V-band, It-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698 / RX J1037.5-5647, HD 110432 / 1H 1249-637 and HD 161103 / RX J1744.7-2713 in an attempt to discover orbitally induced variation. Data were obtained primarily from the ASAS database and were supplemented by shorter term observations made with the 24- and 40-inch ANU telescopes and one of the robotic PROMPT telescopes. Fourier periodograms suggested the existence of long period variation in the V-band light curves of all three HMXBs, however folding the data at those periods did not reveal convincing periodic variation. At this point we cannot rule out the existence of long term V-band variation for these three sources and hints of longer term variation may be seen in the higher precision PROMPT data. Long term V-band observations, on the order of several years, taken at a frequency of at least once per week and with a precision of 0.01 mag, therefore still have a chance of revealing long term variation in these three HMXBs.
基金supported by the National Basic Research Program of China(973 Program,Grant 2014CB845800)the National Natural Science Foundation of China(Grant Nos.11203057,11103061,11133005 and 11121062)the Strategic Priority Research Program“The Emergence of Cosmological Structures”of the Chinese Academy of Sciences(Grant XDB09000000)
文摘The radiative mechanism of black hole X-ray transients (BHXTs) in their quiescent states (defined as the 2-10 keV X-ray luminosity ≤ 10^34 erg s-1) remains unclear. In this work, we investigate the quasi-simultaneous quiescent state spectrum (including radio, infrared, optical, ultraviolet and X-ray) of two BHXTs, A0620-00 and XTE J1118+480. We find that these two sources can be well described by a coupled accretion - jet model. More specifically, most of the emission (radio up to infrared, and the X-ray waveband) comes from the collimated relativistic jet. Emission from hot accretion flow is totally insignificant, and it can only be observed in mid-infrared (the synchrotron peak). Emission from the outer cold disk is only evident in the UV band. These results are consistent with our previous investigation on the quiescent state of V404 Cyg and confirm that the quiescent state is jet-dominated.
基金supported by NASA grant NNX14-AF77Gsupported by a NASA ADAP grant
文摘We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curves of seven pulsars: four HMXBPs, two MSBPs and the ultraluminous X-ray pulsar M82 X-2. We discuss the physics of their flaring activities or lack thereof, paying special attention to their emission properties when they are found on the propeller line, inside the Corbet gap or near the light-cylinder barrier. We provide guiding principles for future interpretations of faint X-ray observations, as well as a method of constraining the propeller lines and the dipolar surface magnetic fields of pulsars using a variety of quiescent states. In the process, we clarify some disturbing inaccuracies that have made their way into the published literature.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11063002 and 11163005)the Natural Science Foundation of Xinjiang(Nos. 2009211B01 and 2010211B05)+2 种基金Foundation of Huo Yingdong (No. 121107)Foundation of Ministry of Education (No. 211198)Doctor Foundation of Xinjiang University (BS100106)
文摘Ultra-compact X-ray binaries (UCXBs) are very interesting and impor- tant objects. By taking the population synthesis approach to the evolution of binaries, we carry out a detailed study of UCXBs. We estimate that there are - 5000-10000 UCXBs in the Galaxy, and their birthrates are - 2.6-7.5×10-4 yr-1. Most UCXBs are transient X-ray sources, but their X-ray luminosities are much lower than those of persistent sources. Therefore, the majority of observed UCXBs should be persistent sources. About 40% - 70% of neutron stars (NSs) in UCXBs form via an accretion- induced collapse from an accreting ONe white dwarf (WD), 1%-10% of NSs in UCXBs form via core-collapse supernovae and others form via the evolution-induced collapse of a naked helium star. About 50% - 80% of UCXBs have naked helium star donors, 5% - 10% of UCXBs have HeWD donors, 15% - 40% of UCXBs have COWD donors and UCXBs with ONeWD indicates that the uncertainty mainly comes which develops in these systems. donors are negligible. Our investigation from evolution of the common-envelope
基金partially supported by the Taiwan Ministry of Science and Technology grant NSC 102-2112-M-008-020-MY3
文摘A low mass X-ray binary (LMXB) contains either a neutron star or a black hole accreting materials from its low mass companion star. It is one of the primary astrophysical sources for studying stellar-mass compact objects and accreting phe- nomena. As with other binary systems, the most important parameter of an LMXB is the orbital period, which allows us to learn about the nature of the binary system and constrain the properties of the system's components, including the compact ob- ject. As a result, measuring the orbital periods of LMXBs is essential for investigating these systems even though fewer than half of them have known orbital periods. This article introduces the different methods for measuring the orbital periods in the X-ray band and reviews their application to various types of LMXBs, such as eclipsing and dipping sources, as well as pulsar LMXBs.
基金Supported by the National Natural Science Foundation of Chinasupported by the Natural Science Foundation of China (Grant No. 11133001)+1 种基金the National Basic Research Program of China (973 Program, 2009CB824800)the Qinglan project of Jiangsu Province
文摘We perform numerical calculations to simulate the evolution of low-mass X-ray binary systems. For the accreting compact object we consider the initial mass of 1.4, 10, 20, 100, 200, 500 and 1000 Mo, corresponding to neutron stars (NSs), stellar- mass black holes (BHs) and intermediate-mass BHs. Mass transfer in these binaries is driven by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking and gravitational wave radiation. For the different systems, we determine their bifurcation periods Pbif that separate the formation of converging systems from the diverging ones, and show that Pbif changes from ~ 1 d to ≥ 3 d for a 1 Mo donor star, with increasing initial accretor mass from 1.4 to 1000 Mo. This means that the dominant mechanism of orbital angular momentum loss changes from magnetic braking to gravitational radiation. As an illustration we compare the evolution of binaries consisting of a secondary star of 1 Mo at a fixed initial period of 2 d. In the case of the NS or stellar-mass BH accretor, the system evolves to a well-detached He white dwarf-neutron star/black hole pair, but it evolves to an ultra- compact binary if the compact object is an intermediate-mass BH. Thus the binary evolution heavily depends upon the mass of the compact object. However, we show that the final orbital period-white dwarf mass relation found for NS low-mass X-ray binaries is fairly insensitive to the initial mass of the accreting star, even if it is an intermediate-mass BH.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 0773023,10833002 and 11073043)the One Hundred Talents project of the Chinese Academy of Sciences+3 种基金the Shanghai Pujiang Program (08PJ14111)the National Basic Research Program of China (973project 2009CB824800)the grant for concept study of space science from the Chinese Academy of Sciencethe starting funds at the Shanghai Astronomical Observatory
文摘We have studied X-ray spectral state transitions that can be seen in the long- term monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) and the Burst Alert Telescope (BAT) onboard Swift during a period of five years from 2005 to 2010. We have applied a program to automatically identify the hard-to-soft (H-S) spectral state transitions in the bright X-ray binaries monitored by the ASM and the BAT. In total, we identified 128 hard-to-soft transitions, of which 59 occurred after 2008. We also determined the transition fluxes and the peak fluxes of the following soft states, updated the measurements of the luminosity corresponding to the H-S transition and the peak luminosity of the following soft state in about 30 bright persistent and transient black hole and neutron star binaries following Yu &Yan, and found the luminosity correlation and the luminosity range of spectral transitions in data between 2008-2010 are about the same as those derived from data before 2008. This further strengthens the idea that the luminosity at which the H-S spectral transition occurs in the Galactic X-ray binaries is determined by non-stationary accretion parameters such as the rate-of-change of the mass accretion rate rather than the mass accretion rate itself. The correlation is also found to hold in data of individual sources 4U 1608-52 and 4U 1636-53.
基金supported by the National Natural Science Foundation of China (Grant Nos.10763001,10963003 and 11063002)the Natural Science Foundation of Xinjiang (Nos.2009211B01 and 2010211B05)+1 种基金the Foundation of Huoyingdong(No.121107)the Scientific Research Program of the Higher Education Institutions of Xinjiang(No.XJEDU2008S12)
文摘By simulating the evolution of spin periods of magnetized neutron stars which interact with their environment in binary systems,we investigate the Galactic population of high mass X-ray binaries(HMXBs) .The number of HMXBs in the Galaxy is between 190 and 240,and their birthrate is from 5.9×10-5 yr-1 to 6.3× 10-5 yr-1.Comparing the Corbet diagram(the positions of the spin periods vs.the orbital periods of HMXBs) in our model with the associated observations,we find that the stellar wind structure and the process of matter transfer are very important for understanding HMXBs.
基金supported by the National Natural Science Foundation of China (Grant No. 10873008)the National Basic Research Program of China (973 Program 2009CB824800)
文摘We adopt the tidal truncation model proposed by Negueruela and Okazaki for Be/X-ray binaries to investigate the influence of intermediate-mass black holes (IMBHs) on Be-star disks. We show that the viscous decretion disks around Be stars are generally truncated ineffectively under the tidal force of IMBHs. Combining this with observations of Be/X-ray binaries, we suggest that Be/IMBH X-ray binaries may appear as recurrent luminous X-ray transients with quasi-periodic X-ray outbursts.
基金supported in part by NASA ADAP grants (NNX14AF77G and 80NSSC18-K0430)
文摘Using recent compilations of detailed X-ray observations and spectral models of exceptional quality, we record the electron cyclotron resonance absorption(ECRA) features that have been detected in 45 pulsating high-mass X-ray binaries(HMXBs) and ultraluminous X-ray(ULX) sources harboring neutron stars, although seven of these detections are still questionable and another 21 are single and/or not independently confirmed. From the comprehensive catalogs of Jaisawal & Naik and Staubert et al.and from several additional recent observations, we produce two lists of HMXB ECRA sources: a list of 17 sources in which multiple ECRA lines or single very low-energy lines are seen, in which we can reasonably assume that the lowest energy reveals the fundamental cyclotron level for each source;and a"contaminated" list of 38 sources including the 21 detections of single ECRA lines that may(not) be higherlevel harmonics. Both lists confirm a previous result that we have obtained independently by modeling the propeller lines of Magellanic HMXB pulsars: the surface dipolar magnetic fields B*of HMXB neutron stars are segregated around five distinct values with B*= 0.28 ± 0.08, 0.55 ± 0.11, 1.3 ± 0.37, 3.0 ± 0.68 and 7.9 ± 3.1, in units of TG. However, an explanation of this phenomenon is currently lacking. We have found no correlation between these B*values and the corresponding observed spin periods, spin period derivatives, orbital periods, maximum X-ray luminosities, neutron star masses or companion star masses.
文摘A model for the low/hard (LH) state associated with a steady jet in black hole X-ray binaries (BHXBs) is proposed based on disc-corona model with open magnetic fields trapped in magnetic patches, which arises from ‘flux expulsion’ effect of convective turbulence. We fit the spectral profiles of the LH state for the BHXBs, 4U 1543-475, GX 339-4, XTE J1550-564 and GRO J1655-40, and fit the relation between jet power and X-ray luminosity dynamically in the LH state by adjusting accretion rate and the outer boundary of the corona over the disc.
基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 11233006 and 11373056)the Science and Technology Commission of Shanghai Municipality (13ZR1447000)+1 种基金support from the Knowledge Innovation Program of the Chinese Academy of SciencesNSFC under grant No. 11403074
文摘Previous works suggested that the state transitions in an X-ray binary can be triggered by accret- ing an inverse magnetic field from its companion star. A key point of this mechanism is the accretion and magnification of large-scale magnetic fields from the outer boundary of a thin disk. However, how such a process can be realized is still an open question. In this work, we check this issue in a realistic X-ray binary system. According to our calculations, a quite strong initial magnetic field, B - 10^2 - 10^3 G, is required in order to assure that the large-scale magnetic field can be effectively dragged inward and magnified with the accretion of gas. Thus, such a picture probably can be present in high-mass X-ray binaries possessing a strong stellar magnetic field, e.g., Cyg X-1.
基金supported by the Natural Science Foundation of China(Grant No.10873008)the Ministry of Science and the National Basic Research Program of China(973 ProgramGrant No.2009CB824800)
文摘There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence. We consider the condition for mass ejection by comparing the radiation pressure from a millisecond pulsar, and the gas pressure at the inner Lagrange point or at the surrounding accretion disk. We calculate the critical spin period of the pulsar below which mass ejection is allowed. Combining with the evolution of the mass transfer rate, we present constraints on the orbital periods of the systems. We show that mass ejection could happen in both wide and compact LMXBs. It may be caused by transient accretion due to thermal instability in the accretion disks in the former, and irradiation-driven mass-transfer cycles in the latter.