High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i...Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.展开更多
Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an init...Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
The synthesis and properties of (Z)-1-(triphenylstannyl)-3-phenyl-1-buten-3-ol (1) are described. Compound 1 crystallizes from alcohol in the monoclinic space group P21/c with unit-cell dimensions a=9.296(2), 6=14.081...The synthesis and properties of (Z)-1-(triphenylstannyl)-3-phenyl-1-buten-3-ol (1) are described. Compound 1 crystallizes from alcohol in the monoclinic space group P21/c with unit-cell dimensions a=9.296(2), 6=14.081(3), c=18.390(5) A,B=97.70(2), V=2385.5(1) A3, Z=4, F(000)=1008, Dc=1.38 g.cm-3,u=10.88 cm-1, final R=0.0359 for 3079 observed reflection [I > 3(I)]. The X-ray diffraction analysis of this compound shows the presence of an intramolecular coordination to the tin atom giving rise to a five-membered ring in which the metal exhibits a distroted trignoal bipyramidal geometry; as a consequence, a phenyl group, probably the apical one, is cleaved more easily by bromine than the vinyl substituent.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins...Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins were analyzed in situ under the load level from 64 to 73 MPa.The X-ray microdiffraction data,collected on beamline 12.3.2 at the Advanced Light Source,were then used to map an area of 396μm x 200μm within the region of interest.The experimental set-up and X-ray diffraction microscopy with a depth resolution allow the position and orientation of each illuminated grain to be determined at the submicron size.A list of parent grains sorted by crystallographic orientation were selected to examine their twinning behavior.The results depict twin variant selection,local misorientation fluctuation and mosaic spread for multi-twins within the same parent grain.As load increases,the amplitude of misorientation fluctuation along twin trace keeps increasing.This is attributable to the accumulation of geometrically necessary dislocations.展开更多
The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental t...The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: αa = 5.8(3) × 10^-5, αb = 5.8 (1)× 10^-5, αc = 5.2(1)× 10^-5, and αv = 7.4(1) × 10^-3 ℃ 1 in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles α, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.展开更多
X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the fir...X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the first time, that there stably exists ammonium chloride in the atmosphere when temperature is low. The total sulfates particles were affected by relative humidity. Both species and concentration of sulfates decreased first and then grew back by the end of each dust storm. Koninckite, a phosphate mineral never reported as particulate aerosol before, was identified. Meanwhile, our result shows that a chemical modification on dust minerals occurs during long range transportation. PM10 samples collected during the period of dust storms were dominated by crustal minerals such as quartz, illite/smectite, illite, chlorite, feldspar and calcite, and were notably higher in concentration than that in normal periods of time. The amounts of total sulfates, calcite and feldspar altered in each dust storm. It is derived from 24-hour isentropic backward trajectories that two dust events in spring 2008 originated in different sources.展开更多
To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light source...To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.展开更多
A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symme...A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symmetry and its spatial dependence in relation to lattice defects. This facility is used to examine, in a self-consistent manner, growth sector-dependant changes to both the crystallographic structure and the lattice defects associated with the action of habit-modifying additives in a number of representative crystal growth systems. In addition, the new instrument can be used to probe micro-crystallographic aspects(such as distortion to crystal symmetry) and relate these in a spatially resolved manner to the crystal defect structure in crystals doped with known habit modifiers.展开更多
A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, ...A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.展开更多
A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample ...A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.展开更多
The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that format...The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation.展开更多
The understanding of reaction mechanisms of electrode materials is of significant importance for the development of advanced batteries.The LiMn2O4 cathode has a voltage plateau around 2.8 V(vs.Li^+/Li),which can provi...The understanding of reaction mechanisms of electrode materials is of significant importance for the development of advanced batteries.The LiMn2O4 cathode has a voltage plateau around 2.8 V(vs.Li^+/Li),which can provide an additional capacity for Li storage,but it suffers from a severe capacity degradation.In this study,operando X-ray diffraction is carried out to investigate the structural evolutions and degradation mechanisms of LiMn2O4 in different voltage ranges.In the range of 3.0-4.3 V(vs.Li^+/Li),the LiMn2O4 cathode exhibits a low capacity but good cycling stability with cycles up to 100 cycles and the charge/discharge processes are associated with the reversible extraction/insertion of Li^+from/into LixMn2O4(0≤x≤1).In the range of 1.4-4.4 V(vs.Li^+/Li),a capacity higher than 200 mAh/g is achieved,but it rapidly decays during the cycling.The voltage plateau around 2.8 V(vs.Li^+/Li)is related to the transformation of the cubic LiMn2O4 phase to the tetragonal Li2Mn2O4 phase,which leads to the formation of cracks as well as the performance degradation.展开更多
The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is det...The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is determined by a newly optimized Voigt function in present investigation. Furthermore, for Cu-4 wt pet Ti alloy aged at 400℃ for 720 min and 1080 min, after introducing the weight factor of above two satellites intensity, the relative error between the fitting curves and X-ray diffraction profiles is less than 0.185%, which is more precise than the previously calculating result.展开更多
Detailed time-and-space-averaged structure of MgSO4 in the concentrated aqueous solutions was investigated via X-ray diffraction with an X’pert Pro θ-θ diffractometer at 298 K, yielding structural function and radi...Detailed time-and-space-averaged structure of MgSO4 in the concentrated aqueous solutions was investigated via X-ray diffraction with an X’pert Pro θ-θ diffractometer at 298 K, yielding structural function and radial distribution function(RDF). The developed KURVLR program was employed for the theoretical investigation in consideration of the ionic hydration and ion association. Multi-peaks Gaussian fitting method was applied to deconvolving the overlapping bands of Differential radial distribution function(DRDF). The calculation of the geometric model shows that octahedrally six-coordinated Mg(H2O)62+, with an Mg2+…OW bond length of 0.201 nm dominates in the solutions. There exists contact ion-pair(CIP) in the more concentrated solution(1:18, H2O/salt molar ratio) with a coordination number of 0.8 and a characteristic Mg…S distance of 0.340 nm. The result indicates the hydrated SO42– ion happens in the solution. The S…OW bond distance was determined to be 0.382 nm with a coordination number of 13. The fraction of CIP increases significantly with the increasing concentration. The symmetry of the hydration structure of sulfate ion is lowered by forming complex with magnesium ion.展开更多
Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy(>100 mJ)at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser...Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy(>100 mJ)at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser intensity is at relativistic regime(2×10^(19)W/cm^(2)),which is essential for effectively generating K_(α)source in high-Z metal material.The produced copper K_(α)radiation yield reaches to 2.5×10^(8)photons/sr/shot.The multilayer mirrors are optimized for monochromatizating and two-dimensional beam shaping of Kαemission.Our experiment exhibits its ability of monitoring the transient structural changes in a thin film SrCoO_(2.5)crystal.It is demonstrated that this facility is a powerful tool to perform dynamic studies on samples and adaptable to the specific needs for different particular applications with high flexibility.展开更多
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFF0709103,2022YFA1603601,2021YFF0601203,and 2021YFA1600703)the National Natural Science Foundation of China (Grant No.81430087)the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,Shanghai Branch (Grant No.JCYJ-SHFY-2021-010)。
文摘Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
基金supported by the National Natural Science Foundation of China(Grant Nos.12304033,12072328,and 11991073).
文摘Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金Project supported by the National Natural Sciences Foundation of China.
文摘The synthesis and properties of (Z)-1-(triphenylstannyl)-3-phenyl-1-buten-3-ol (1) are described. Compound 1 crystallizes from alcohol in the monoclinic space group P21/c with unit-cell dimensions a=9.296(2), 6=14.081(3), c=18.390(5) A,B=97.70(2), V=2385.5(1) A3, Z=4, F(000)=1008, Dc=1.38 g.cm-3,u=10.88 cm-1, final R=0.0359 for 3079 observed reflection [I > 3(I)]. The X-ray diffraction analysis of this compound shows the presence of an intramolecular coordination to the tin atom giving rise to a five-membered ring in which the metal exhibits a distroted trignoal bipyramidal geometry; as a consequence, a phenyl group, probably the apical one, is cleaved more easily by bromine than the vinyl substituent.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
基金Project(DP140102355)supported by the Australian Research Council(ARC)Project supported by the China Scholarship Council(CSC)
文摘Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins were analyzed in situ under the load level from 64 to 73 MPa.The X-ray microdiffraction data,collected on beamline 12.3.2 at the Advanced Light Source,were then used to map an area of 396μm x 200μm within the region of interest.The experimental set-up and X-ray diffraction microscopy with a depth resolution allow the position and orientation of each illuminated grain to be determined at the submicron size.A list of parent grains sorted by crystallographic orientation were selected to examine their twinning behavior.The results depict twin variant selection,local misorientation fluctuation and mosaic spread for multi-twins within the same parent grain.As load increases,the amplitude of misorientation fluctuation along twin trace keeps increasing.This is attributable to the accumulation of geometrically necessary dislocations.
基金financially supported by the Natural Science Foundation of China(Grant 40872033)the Fundamental Research Funds for the Central Universities(to XL)the Natural Sciences and Engineering Research Council of Canada(to MF)
文摘The thermal expansion coefficients of kyanite at ambient pressure have been investigated by an X-ray powder diffraction technique with temperatures up to 1000 ℃. No phase transition was observed in the experimental temperature range. Data for the unit-cell parameters and temperatures were fitted empirically resulting in the following thermal expansion coefficients: αa = 5.8(3) × 10^-5, αb = 5.8 (1)× 10^-5, αc = 5.2(1)× 10^-5, and αv = 7.4(1) × 10^-3 ℃ 1 in good agreement with a recent neutron powder diffraction study. On the other hand, the variation of the unit-cell angles α, β and γ of kyanite with increase in temperature is very complicated, and the agreement among all studies is poor. The thermal expansion data at ambient pressure reported here and the compression data at ambient temperature from the literature suggest that, for the kyanite lattice, the most and least thermally expandable directions correspond to the most and least compressible directions, respectively.
基金supported by the National Natural Science Foundation of China(No.40972033, 40872034,40572032)the 15th and 16th Laboratory Funds of Peking University
文摘X-ray diffractometry was utilized to study the mineralogical characteristics of the inhalable particles (PM10) sampled during two dust storms in Beijing city on March 18th and May 21st, 2008. We confirm, for the first time, that there stably exists ammonium chloride in the atmosphere when temperature is low. The total sulfates particles were affected by relative humidity. Both species and concentration of sulfates decreased first and then grew back by the end of each dust storm. Koninckite, a phosphate mineral never reported as particulate aerosol before, was identified. Meanwhile, our result shows that a chemical modification on dust minerals occurs during long range transportation. PM10 samples collected during the period of dust storms were dominated by crustal minerals such as quartz, illite/smectite, illite, chlorite, feldspar and calcite, and were notably higher in concentration than that in normal periods of time. The amounts of total sulfates, calcite and feldspar altered in each dust storm. It is derived from 24-hour isentropic backward trajectories that two dust events in spring 2008 originated in different sources.
基金supported by National Natural Science Foundation of China(No.11475202,11405187)the Youth Innovation Association of Chinese Academy of SciencesKey Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH001)
文摘To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.
基金Supported by EPSRC,the UK Research Council(No. GRIR 6 5 787)
文摘A novel crystal characterization instrument has been built up in which a combination of X-ray multiple diffraction and X-ray topography is applied to enabling the cross-correlation between micro-crystallographic symmetry and its spatial dependence in relation to lattice defects. This facility is used to examine, in a self-consistent manner, growth sector-dependant changes to both the crystallographic structure and the lattice defects associated with the action of habit-modifying additives in a number of representative crystal growth systems. In addition, the new instrument can be used to probe micro-crystallographic aspects(such as distortion to crystal symmetry) and relate these in a spatially resolved manner to the crystal defect structure in crystals doped with known habit modifiers.
基金supported by the National Natural Science Foundation of China (21263015,21567016 and 21503106)the Education Department Foundation of Jiangxi Province (KJLD14005 and GJJ150016)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006),which are greatly acknowledged by the authors~~
文摘A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.
文摘A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.
文摘The formation cause of orange peel of aluminum-alloy automotive sheet after tensile deformation was analysed by using X-ray diffraction and electron back-scattered diffraction(EBSD).The test results showed that formation cause of surface orange peel after tensile deformation related to product texture and nonuniform deformation during the tensile process.The grain size has significant effect on deformation uniform and texture formation.Coarse grains were easy to produce nonuniform deformation and texture,which would produce surface orange peel after tensile deformation.
基金the financial support by the National Natural Science Foundation of China (51871133, 51671115)support by the Department of Science and Technology of the Shandong Province for the Young Tip-Top Talent Support Project.
文摘The understanding of reaction mechanisms of electrode materials is of significant importance for the development of advanced batteries.The LiMn2O4 cathode has a voltage plateau around 2.8 V(vs.Li^+/Li),which can provide an additional capacity for Li storage,but it suffers from a severe capacity degradation.In this study,operando X-ray diffraction is carried out to investigate the structural evolutions and degradation mechanisms of LiMn2O4 in different voltage ranges.In the range of 3.0-4.3 V(vs.Li^+/Li),the LiMn2O4 cathode exhibits a low capacity but good cycling stability with cycles up to 100 cycles and the charge/discharge processes are associated with the reversible extraction/insertion of Li^+from/into LixMn2O4(0≤x≤1).In the range of 1.4-4.4 V(vs.Li^+/Li),a capacity higher than 200 mAh/g is achieved,but it rapidly decays during the cycling.The voltage plateau around 2.8 V(vs.Li^+/Li)is related to the transformation of the cubic LiMn2O4 phase to the tetragonal Li2Mn2O4 phase,which leads to the formation of cracks as well as the performance degradation.
基金supported by the Aeronautical Basic Science Foundation(No.00G53054)the National Natural Science Foundation of China(No.50171053).
文摘The intensity and position of sidebands (satellites) on both sides of main diffraction peak in a great number of X-ray diffraction profiles of alloys always change with progress of aging. The sidebands position is determined by a newly optimized Voigt function in present investigation. Furthermore, for Cu-4 wt pet Ti alloy aged at 400℃ for 720 min and 1080 min, after introducing the weight factor of above two satellites intensity, the relative error between the fitting curves and X-ray diffraction profiles is less than 0.185%, which is more precise than the previously calculating result.
基金Supported by the Key Program of the National Natural Science Foundation of China(Nos.20836009 and 20873172)
文摘Detailed time-and-space-averaged structure of MgSO4 in the concentrated aqueous solutions was investigated via X-ray diffraction with an X’pert Pro θ-θ diffractometer at 298 K, yielding structural function and radial distribution function(RDF). The developed KURVLR program was employed for the theoretical investigation in consideration of the ionic hydration and ion association. Multi-peaks Gaussian fitting method was applied to deconvolving the overlapping bands of Differential radial distribution function(DRDF). The calculation of the geometric model shows that octahedrally six-coordinated Mg(H2O)62+, with an Mg2+…OW bond length of 0.201 nm dominates in the solutions. There exists contact ion-pair(CIP) in the more concentrated solution(1:18, H2O/salt molar ratio) with a coordination number of 0.8 and a characteristic Mg…S distance of 0.340 nm. The result indicates the hydrated SO42– ion happens in the solution. The S…OW bond distance was determined to be 0.382 nm with a coordination number of 13. The fraction of CIP increases significantly with the increasing concentration. The symmetry of the hydration structure of sulfate ion is lowered by forming complex with magnesium ion.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0403301)Science Challenge Project(Grant No.TZ2018005)+1 种基金the National Natural Science Foundation of China(Grant Nos.11991073,11721404,11805266,11905289,and 61975229)Key Program of Chinese Academy of Sciences(Grant Nos.XDA25030400 and XDB17030500).
文摘Based on a femtosecond laser plasma-induced hard x-ray source with a high laser pulse energy(>100 mJ)at 10 Hz repetition rate,we present a time-resolved x-ray diffraction system on an ultrafast time scale.The laser intensity is at relativistic regime(2×10^(19)W/cm^(2)),which is essential for effectively generating K_(α)source in high-Z metal material.The produced copper K_(α)radiation yield reaches to 2.5×10^(8)photons/sr/shot.The multilayer mirrors are optimized for monochromatizating and two-dimensional beam shaping of Kαemission.Our experiment exhibits its ability of monitoring the transient structural changes in a thin film SrCoO_(2.5)crystal.It is demonstrated that this facility is a powerful tool to perform dynamic studies on samples and adaptable to the specific needs for different particular applications with high flexibility.
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.