The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyze...The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyzed the characteristics and nowcasting signals of a tornado case that occurred on June 16,2022 in the Guangzhou region.Our findings indicate that the violent contraction of rotation radius and the dramatic increase in rotation speed were important signal characteristics associated with tornado formation.The X-band phased array radar,with its high temporal and spatial resolution,provided an opportunity to capture early warning signals from polarimetric characteristics.The X-band phased array radar demonstrated noteworthy ability to identify apparent tornado vortex signature(TVS)features in a 10-minute lead time,surpassing the capabilities of the CINRAD/SA radar.Additionally,due to its higher scanning frequency,the Xband phased-array radar was capable of consistently identifying TVS with shorter intervals,enabling a more precise tracking of the tornado's path.The application of professional radars,in this case,provides valuable insights for the monitoring of evolutions of severe local storms and even tornadoes and the issuance of early warning signals.展开更多
This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Are...This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.展开更多
A porous 3D cross-linked conductive network pierced by multi-wall carbon nanotubes(MWCNTs) was successfully designed from zeolitic imidazolate framework-8(ZIF-8). Zn@NPC@MWCNTs composites were tailored by the facile r...A porous 3D cross-linked conductive network pierced by multi-wall carbon nanotubes(MWCNTs) was successfully designed from zeolitic imidazolate framework-8(ZIF-8). Zn@NPC@MWCNTs composites were tailored by the facile regulating the mass ratios and thermal annealing treatment. Due to the combination of less eddy current loss and dielectric loss together with multiple reflection attenuation caused by a unique structure. With a 10 wt% filler loading, the Zn@NPC@MWCNTs composites carbonized at 800℃ show two high reflection loss(RL) values with different thicknesses. An RL value is-53.18 dB with 4.09 mm thickness in the C-Band(4-8 GHz), and a minimum RL can reach-74.83 d B(10.8 GHz)with a matching thickness of 2.749 mm. The effective absorption bandwidth is 4 GHz(from 8 to 12 GHz,RL ≤-10 d B), which just covers the full X-band. Low cost and easy preparation can also provide advantages to develop MOF-based materials as effective EMW absorbents.展开更多
The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approach...The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.展开更多
We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital auto...We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.展开更多
The development of an AIGaN/GaN HEMT power MMIC on SI-SiC designed in microstrip technology is pres- ented. A recessed-gate and a field-plate are used in the device processing to improve the performance of the AIGaN/G...The development of an AIGaN/GaN HEMT power MMIC on SI-SiC designed in microstrip technology is pres- ented. A recessed-gate and a field-plate are used in the device processing to improve the performance of the AIGaN/GaN HEMTs. S-parameter measurements show that the frequency performance of the AIGaN/GaN HEMTs depends significantly on the operating voltage. Higher operating voltage is a key to higher power gain for the AIGaN/GaN HEMTs. The developed 2-stage power MMIC delivers an output power of more than 10W with over 12dB power gain across the band of 9-11GHz at a drain bias of 30V. Peak output power inside the band reaches 14.7W with a power gain of 13.7dB and a PAE of 23%. The MMIC chip size is only 2.0mm × 1. 1mm. This work shows superiority over previously reported X-band AIGaN/GaN HEMT power MMICs in output power per millimeter gate width and output power per unit chip size.展开更多
An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability ...An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.展开更多
The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of...The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of each radar resolution cell. And then, in terms of the Doppler shift, a retrieval algorithm extracting the vertical displacement of the sea surface has been proposed. The effects induced by radar look-direction and radar spatial resolution are both taken into account in this retrieval algorithm. The comparison between the sea surface spectrum of buoy data and the retrieved spectrum reveals that the function of the radar spatial resolution is equivalent to a low pass filter, impacting especially the spectrum of short gravity waves. The experimental data collected by McMaster IPIX radar are also used to validate the performance of the retrieval algorithm. The derived significant wave height and wave period are compared with the in situ measurements, and the agreement indicates the practicality of the retrieval technology.展开更多
Using melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation...Using melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation coefficient(CC)in the ML and NML are obtained in several stable precipitation processes.The prior probability density distributions(PDDs)of the ZH,ZDR and CC are calculated first,and then the probabilities of ZH,ZDR and CC at each radar gate are determined(PBB in the ML and PNB in the NML)by the Bayesian method.When PBB>PNB the gate belongs to the ML,and when PBB<PNB the gate belongs to the NML.The ML identification results with the Bayesian method are contrasUsing melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation coefficient(CC)in the ML and NML are obtained in several stable precipitation processes.The prior probability density distributions(PDDs)of the ZH,ZDR and CC are calculated first,and then the probabilities of ZH,ZDR and CC at each radar gate are determined(PBB in the ML and PNB in the NML)by the Bayesian method.When PBB>PNB the gate belongs to the ML,and when PBB<PNB the gate belongs to the NML.The ML identification results with the Bayesian method are contrasted under the conditions of the independent PDDs and joint PDDs of the ZH,ZDR and CC.The results suggest that MLs can be identified effectively,although there are slight differences between the two methods.Because the values of the polarization parameters are similar in light rain and dry snow,it is difficult for the polarization radar to distinguish them.After using the Bayesian method to identify the ML,light rain and dry snow can be effectively separated with the X-POL observed data.ted under the conditions of the independent PDDs and joint PDDs of the ZH,ZDR and CC.The results suggest that MLs can be identified effectively,although there are slight differences between the two methods.Because the values of the polarization parameters are similar in light rain and dry snow,it is difficult for the polarization radar to distinguish them.After using the Bayesian method to identify the ML,light rain and dry snow can be effectively separated with the X-POL observed data.展开更多
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites...A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.展开更多
Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A...Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images.Assuming that the ocean is a two-layer finite depth system,we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula.Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.展开更多
Although the complex Wishart distribution has been widely used to analyze the statistic properties of quad-pol SAR spatial data, the applicability of this complex distribution to the time series of sea clutter is rare...Although the complex Wishart distribution has been widely used to analyze the statistic properties of quad-pol SAR spatial data, the applicability of this complex distribution to the time series of sea clutter is rarely discussed.The measured data of the quad-pol X-band marine radar demonstrate that the time series of the sea echoes are also satisfied the circular Gaussian distributions if the low intensity signals, which are mainly dominated by a radar noise, in the shadow regions of the large-scale waves are removed. On the basis of this fact, the probability density functions(PDFs) of the intensity as well as the phase, the real and the imaginary parts of the sea echoes obtained by the marine radar have been derived, and the theoretical models are all expressed in closed forms. In order to validate the theoretical results, the PDFs are compared with the experimental data collected by the Mc Master IPIX radar. And the comparisons show that the PDF models are in good agreement with the experimental data.展开更多
X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsi...X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsinghua University will utilize X-band high-gradient accelerating structures to boost the electron beam from 50 to 350 MeV over a short distance.A constant-impedance traveling-wave structure consisting of 72 cells working in the 2π/3 mode was designed and fabricated for this project.Precise tuning and detailed measurements were successfully applied to the structure.After 180 h of conditioning in the Tsinghua high-power test stand,the structure reached a target gradient of 80 MV/m.The breakdown rate versus gradient of this structure was measured and analyzed.展开更多
One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continu...One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed.展开更多
Ocean wave spectrum and surface currents can be determined from a series of spatial wave images recorded by an X-band marine radar. In the absence of a surface current, the three-dimensional spectral energy found by u...Ocean wave spectrum and surface currents can be determined from a series of spatial wave images recorded by an X-band marine radar. In the absence of a surface current, the three-dimensional spectral energy found by using the series of images will be confined to a trajectory defined by the still water dispersion relationship. The presence of a surface current will make the three-dimensional spectral energy show a corresponding Doppler shill which may determine the current using the least squares method and obtain the directional wave spectrum. On the basis of conventional wave spectrum and directional function, the paper emulates a series of X-band radar images considering shadowing modulation and simulates numerically the threedimensional image spectrum both with and without a surface current, calculates the current velocity by virtue of the Doppler shift, and obtains the two-dimensional image spectrum. Finally the paper analyzes measured wave level elevation-a function of time t to obtain one-dimensional image spectrum, and the data comes from an X-band radar in McMaster University.展开更多
Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weat...Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems.展开更多
Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological...Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological risk management, hydroelectric power, road and tourism. Both conventional long-range radars and rain-gauges suffer from measurement errors and difficulties in precipitation estimation. For efficient monitoring operation of localized rain events of limited extension and of small basins of interest, an unrealistic extremely dense rain gauge network should be needed. Alternatively C-band or S-band meteorological long range radars are able to monitor rain fields over wide areas, however with not enough space and time resolution, and with high purchase and maintenance costs. Short-range X-band radars for rain monitoring can be a valid compromise solution between the two more common rain measurement and observation instruments. Lots of scientific efforts have already focused on radar-gauge adjustment and quantitative precipitation estimation in order to improve the radar measurement techniques. After some considerations about long range radars and gauge network, this paper presents instead some examples of how X-band mini radars can be very useful for the observation of rainfall events and how they can integrate and supplement long range radars and rain gauge networks. Three case studies are presented: A very localized and intense event, a rainfall event with high temporal and spatial variability and the employ of X-band mini radar in a mountainous region with narrow valleys. The adaptability of such radar devoted to monitor rain is demonstrated.展开更多
The C-band is allocated for commercial telecommunications via satellites. Amateur satellite operations in the frequency range 5.830 to 5.850 GHz for down-links and 5.650 to 5.670 GHz for up-links are allowed by Intern...The C-band is allocated for commercial telecommunications via satellites. Amateur satellite operations in the frequency range 5.830 to 5.850 GHz for down-links and 5.650 to 5.670 GHz for up-links are allowed by International Telecommunication Union. The X-band is used for terrestrial broadband communication, radar applications, and portions of the X-band are assigned for deep space telecommunications. In this paper, a design of 4 × 1 Ultra Wide Band (UWB) antenna array for C-band and X-band applications is introduced. Metamaterial sixteen-unit cells are incorporated into each antenna element for radiation characteristics enhancement purposes. Permeability and permittivity of metamaterial unit cells are obtained all over the operating bandwidth. UWB unequal power divider is used to feed the proposed four elements antenna array based on Chebyshev excitation method. The proposed antenna has a suitable 3 dB beam width and gains all over the operating bandwidth which extends from 5.6 GHz to 10.9 GHz. The proposed antenna covers 60% and 72.5% of the C-band and X-band, respectively. The proposed antenna is fabricated, measured, and good agreement is obtained between simulated and measured results. The obtained performance ensures the suitability of the proposed antenna array for C-band and X-band applications.展开更多
We have made observations of X-band radar sea clutter from the sea surface and sea-surface state in the Uraga Suido Traffic Route, which is used by ships entering and leaving Tokyo Bay, and the nearby Daini Kaiho Sea ...We have made observations of X-band radar sea clutter from the sea surface and sea-surface state in the Uraga Suido Traffic Route, which is used by ships entering and leaving Tokyo Bay, and the nearby Daini Kaiho Sea Fortress. We estimated the distributions of reflected amplitudes due to sea clutter using models that assume Weibull, Log-Weibull, Log-normal, and K-distributions. We then compared the results of estimating these distributions with sea-surface state data to investigate the effects of changes in the sea-surface state on the statistical characteristics of sea clutter. As a result, we showed that observed sub-ranges not containing a target conformed better to the Weibull distribution regardless of Significant Wave Height (SWH). Further, sub-ranges conforming to the Log-Weibull or Log-normal distribution in areas contained a target when the SWH was large, and as SWH decreases, sub-ranges conforming to a Log-normal. We also showed that for observed sub-ranges not containing a target, the shape parameter, c, of both Weibull and Log-Weibull distribution correlated with SWH. The correlation between wave period and shape parameters of Weibull and Log-Weibull distribution showed a weak correlation.展开更多
Advanced wireless standards of communication like 3GPP and LTE are becoming more and more efficient and with this evolution of communication systems mobile equipment is also become smaller and smaller. Power amplifier...Advanced wireless standards of communication like 3GPP and LTE are becoming more and more efficient and with this evolution of communication systems mobile equipment is also become smaller and smaller. Power amplifier designing has become a very crucial task in this era where efficiency and size are the main concern of any designer. In this paper we have design and analyzed X-band Class E Metal-semiconductor field effect transistor(MESFET) based Power Amplifier. This device targets the devices which use OFDM technique to improve their spectral efficiency for the next generation communication systems. Microstrip lines are used to achieve small size for our design instead of lumped components. Load Pull measurements are used to get MESFET input and output impedances optimum values. For linear and non linear operation small signal mathematical model of the design is used. To reduce thermal losses FR4 substrate is used to increase PA efficiency. Our designs shows small values of input and output return loss of about-22.3d B and-23.716 d B achieving a high gain of about25.6 d B respectively, with PAE of about 30 % having stability factor greater than 1 and 21.894 d Bm of output power.展开更多
基金National Key R&D Program of China (2022YFC3004101)Science and Technology Projects of Guangzhou (2023B04J0704,2023B04J0232)+1 种基金Natural Science Foundation of Guangdong Province (2022A15150118141)Key Scientific and Technological Research Project of Guangzhou Meteorological Society (Z202201)。
文摘The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyzed the characteristics and nowcasting signals of a tornado case that occurred on June 16,2022 in the Guangzhou region.Our findings indicate that the violent contraction of rotation radius and the dramatic increase in rotation speed were important signal characteristics associated with tornado formation.The X-band phased array radar,with its high temporal and spatial resolution,provided an opportunity to capture early warning signals from polarimetric characteristics.The X-band phased array radar demonstrated noteworthy ability to identify apparent tornado vortex signature(TVS)features in a 10-minute lead time,surpassing the capabilities of the CINRAD/SA radar.Additionally,due to its higher scanning frequency,the Xband phased-array radar was capable of consistently identifying TVS with shorter intervals,enabling a more precise tracking of the tornado's path.The application of professional radars,in this case,provides valuable insights for the monitoring of evolutions of severe local storms and even tornadoes and the issuance of early warning signals.
文摘This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.
基金supported by the Natural Science Foundation of Anhui Province (Grant No. 2008085MF217, Grant No. 2008085QF287)the University Natural Science Research Project of Anhui Province (Grant No. KJ2021A0912, Grant No. KJ2020A0091, Grant No. KJ2019A0714)+1 种基金the Program Fund for Excellent Young Talents of Higher Education Institutions of Anhui Province (Grant No. gxyq2020042)Anhui Province Key Laboratory of Simulation and Design for Electronic Information System (Grant No. 2019ZDSYSZB02)
文摘A porous 3D cross-linked conductive network pierced by multi-wall carbon nanotubes(MWCNTs) was successfully designed from zeolitic imidazolate framework-8(ZIF-8). Zn@NPC@MWCNTs composites were tailored by the facile regulating the mass ratios and thermal annealing treatment. Due to the combination of less eddy current loss and dielectric loss together with multiple reflection attenuation caused by a unique structure. With a 10 wt% filler loading, the Zn@NPC@MWCNTs composites carbonized at 800℃ show two high reflection loss(RL) values with different thicknesses. An RL value is-53.18 dB with 4.09 mm thickness in the C-Band(4-8 GHz), and a minimum RL can reach-74.83 d B(10.8 GHz)with a matching thickness of 2.749 mm. The effective absorption bandwidth is 4 GHz(from 8 to 12 GHz,RL ≤-10 d B), which just covers the full X-band. Low cost and easy preparation can also provide advantages to develop MOF-based materials as effective EMW absorbents.
基金Guangzhou Science and Technology Plan Project(202103000030)Guangdong Meteorological Bureau Science and Technology Project(GRMC2020Z08)a project co-funded by the Development Team of Radar Application and Severe Convection Early Warning Technology(GRMCTD202002)。
文摘The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.
基金Project supported by the Chinese Academy of Sciences(Grant Nos.XDC07000000 and GJJSTD20200001)Hefei Comprehensive National Science CenterYouth Innovation Promotion Association of Chinese Academy of Sciences for the support。
文摘We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.
文摘The development of an AIGaN/GaN HEMT power MMIC on SI-SiC designed in microstrip technology is pres- ented. A recessed-gate and a field-plate are used in the device processing to improve the performance of the AIGaN/GaN HEMTs. S-parameter measurements show that the frequency performance of the AIGaN/GaN HEMTs depends significantly on the operating voltage. Higher operating voltage is a key to higher power gain for the AIGaN/GaN HEMTs. The developed 2-stage power MMIC delivers an output power of more than 10W with over 12dB power gain across the band of 9-11GHz at a drain bias of 30V. Peak output power inside the band reaches 14.7W with a power gain of 13.7dB and a PAE of 23%. The MMIC chip size is only 2.0mm × 1. 1mm. This work shows superiority over previously reported X-band AIGaN/GaN HEMT power MMICs in output power per millimeter gate width and output power per unit chip size.
基金funded by National High-Tech Research and Development Projects (863 Grant No. 2007AA061901)+2 种基金the National Key Program for Developing Basic Sciences (Grant No. 2012CB417202)the National Natural Science Foundation of China (Grant No. 41175038)the Public Welfare Meteorological Special Project (Grant No. GYHY201106046)
文摘An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.
基金The National Natural Science Foundation of China under contract Nos 41376179 and 41106153the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404
文摘The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of each radar resolution cell. And then, in terms of the Doppler shift, a retrieval algorithm extracting the vertical displacement of the sea surface has been proposed. The effects induced by radar look-direction and radar spatial resolution are both taken into account in this retrieval algorithm. The comparison between the sea surface spectrum of buoy data and the retrieved spectrum reveals that the function of the radar spatial resolution is equivalent to a low pass filter, impacting especially the spectrum of short gravity waves. The experimental data collected by McMaster IPIX radar are also used to validate the performance of the retrieval algorithm. The derived significant wave height and wave period are compared with the in situ measurements, and the agreement indicates the practicality of the retrieval technology.
基金supported by a Beijing Municipal Science and Technology Project (Grant No. Z171100004417008)the National Key R&D Program of China (Grant No. 2018YFF0300102)the National Natural Science Foundation of China (Grant Nos. 41375038 and 41575050)
文摘Using melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation coefficient(CC)in the ML and NML are obtained in several stable precipitation processes.The prior probability density distributions(PDDs)of the ZH,ZDR and CC are calculated first,and then the probabilities of ZH,ZDR and CC at each radar gate are determined(PBB in the ML and PNB in the NML)by the Bayesian method.When PBB>PNB the gate belongs to the ML,and when PBB<PNB the gate belongs to the NML.The ML identification results with the Bayesian method are contrasUsing melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation coefficient(CC)in the ML and NML are obtained in several stable precipitation processes.The prior probability density distributions(PDDs)of the ZH,ZDR and CC are calculated first,and then the probabilities of ZH,ZDR and CC at each radar gate are determined(PBB in the ML and PNB in the NML)by the Bayesian method.When PBB>PNB the gate belongs to the ML,and when PBB<PNB the gate belongs to the NML.The ML identification results with the Bayesian method are contrasted under the conditions of the independent PDDs and joint PDDs of the ZH,ZDR and CC.The results suggest that MLs can be identified effectively,although there are slight differences between the two methods.Because the values of the polarization parameters are similar in light rain and dry snow,it is difficult for the polarization radar to distinguish them.After using the Bayesian method to identify the ML,light rain and dry snow can be effectively separated with the X-POL observed data.ted under the conditions of the independent PDDs and joint PDDs of the ZH,ZDR and CC.The results suggest that MLs can be identified effectively,although there are slight differences between the two methods.Because the values of the polarization parameters are similar in light rain and dry snow,it is difficult for the polarization radar to distinguish them.After using the Bayesian method to identify the ML,light rain and dry snow can be effectively separated with the X-POL observed data.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04,KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.
基金Supported by the Key Program and the Normal Program of the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04 and KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images.Assuming that the ocean is a two-layer finite depth system,we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula.Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.
基金The National Key Research and Development Program of China under contract No.2016YFC1401008the National Natural Science Foundation of China under contract No.41376179the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404
文摘Although the complex Wishart distribution has been widely used to analyze the statistic properties of quad-pol SAR spatial data, the applicability of this complex distribution to the time series of sea clutter is rarely discussed.The measured data of the quad-pol X-band marine radar demonstrate that the time series of the sea echoes are also satisfied the circular Gaussian distributions if the low intensity signals, which are mainly dominated by a radar noise, in the shadow regions of the large-scale waves are removed. On the basis of this fact, the probability density functions(PDFs) of the intensity as well as the phase, the real and the imaginary parts of the sea echoes obtained by the marine radar have been derived, and the theoretical models are all expressed in closed forms. In order to validate the theoretical results, the PDFs are compared with the experimental data collected by the Mc Master IPIX radar. And the comparisons show that the PDF models are in good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China (Nos. 11922504 and 12027902)
文摘X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsinghua University will utilize X-band high-gradient accelerating structures to boost the electron beam from 50 to 350 MeV over a short distance.A constant-impedance traveling-wave structure consisting of 72 cells working in the 2π/3 mode was designed and fabricated for this project.Precise tuning and detailed measurements were successfully applied to the structure.After 180 h of conditioning in the Tsinghua high-power test stand,the structure reached a target gradient of 80 MV/m.The breakdown rate versus gradient of this structure was measured and analyzed.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX-YW-12-04)the National Natural Science Foundation of China (No. 41030855)+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2008AA09A403)the Marine Public Welfare Project of China (No. 201105032)
文摘One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed.
基金Supported by the National Natural Science Foundation of China (60571065, 40406020)
文摘Ocean wave spectrum and surface currents can be determined from a series of spatial wave images recorded by an X-band marine radar. In the absence of a surface current, the three-dimensional spectral energy found by using the series of images will be confined to a trajectory defined by the still water dispersion relationship. The presence of a surface current will make the three-dimensional spectral energy show a corresponding Doppler shill which may determine the current using the least squares method and obtain the directional wave spectrum. On the basis of conventional wave spectrum and directional function, the paper emulates a series of X-band radar images considering shadowing modulation and simulates numerically the threedimensional image spectrum both with and without a surface current, calculates the current velocity by virtue of the Doppler shift, and obtains the two-dimensional image spectrum. Finally the paper analyzes measured wave level elevation-a function of time t to obtain one-dimensional image spectrum, and the data comes from an X-band radar in McMaster University.
基金Guangdong Basic and Applied Basic Research Foundation(2020A1515010602)Special Fund of China Meteorological Administration for Innovation and Development(CXFZ2022J063)+4 种基金Special Fund for Forecasters of China Meteorological Administration(CMAYBY2019-082)Science and Technology Planning Program of Guangzhou(201903010101)Key-Area Research and Development Program of Guangdong Province(2020B1111200001)National Natural Science Foundation of China(42075190,41875182)Radar Application and Shortterm Severe-weather Predictions and Warnings Technology Program(GRMCTD202002)。
文摘Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems.
文摘Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological risk management, hydroelectric power, road and tourism. Both conventional long-range radars and rain-gauges suffer from measurement errors and difficulties in precipitation estimation. For efficient monitoring operation of localized rain events of limited extension and of small basins of interest, an unrealistic extremely dense rain gauge network should be needed. Alternatively C-band or S-band meteorological long range radars are able to monitor rain fields over wide areas, however with not enough space and time resolution, and with high purchase and maintenance costs. Short-range X-band radars for rain monitoring can be a valid compromise solution between the two more common rain measurement and observation instruments. Lots of scientific efforts have already focused on radar-gauge adjustment and quantitative precipitation estimation in order to improve the radar measurement techniques. After some considerations about long range radars and gauge network, this paper presents instead some examples of how X-band mini radars can be very useful for the observation of rainfall events and how they can integrate and supplement long range radars and rain gauge networks. Three case studies are presented: A very localized and intense event, a rainfall event with high temporal and spatial variability and the employ of X-band mini radar in a mountainous region with narrow valleys. The adaptability of such radar devoted to monitor rain is demonstrated.
文摘The C-band is allocated for commercial telecommunications via satellites. Amateur satellite operations in the frequency range 5.830 to 5.850 GHz for down-links and 5.650 to 5.670 GHz for up-links are allowed by International Telecommunication Union. The X-band is used for terrestrial broadband communication, radar applications, and portions of the X-band are assigned for deep space telecommunications. In this paper, a design of 4 × 1 Ultra Wide Band (UWB) antenna array for C-band and X-band applications is introduced. Metamaterial sixteen-unit cells are incorporated into each antenna element for radiation characteristics enhancement purposes. Permeability and permittivity of metamaterial unit cells are obtained all over the operating bandwidth. UWB unequal power divider is used to feed the proposed four elements antenna array based on Chebyshev excitation method. The proposed antenna has a suitable 3 dB beam width and gains all over the operating bandwidth which extends from 5.6 GHz to 10.9 GHz. The proposed antenna covers 60% and 72.5% of the C-band and X-band, respectively. The proposed antenna is fabricated, measured, and good agreement is obtained between simulated and measured results. The obtained performance ensures the suitability of the proposed antenna array for C-band and X-band applications.
文摘We have made observations of X-band radar sea clutter from the sea surface and sea-surface state in the Uraga Suido Traffic Route, which is used by ships entering and leaving Tokyo Bay, and the nearby Daini Kaiho Sea Fortress. We estimated the distributions of reflected amplitudes due to sea clutter using models that assume Weibull, Log-Weibull, Log-normal, and K-distributions. We then compared the results of estimating these distributions with sea-surface state data to investigate the effects of changes in the sea-surface state on the statistical characteristics of sea clutter. As a result, we showed that observed sub-ranges not containing a target conformed better to the Weibull distribution regardless of Significant Wave Height (SWH). Further, sub-ranges conforming to the Log-Weibull or Log-normal distribution in areas contained a target when the SWH was large, and as SWH decreases, sub-ranges conforming to a Log-normal. We also showed that for observed sub-ranges not containing a target, the shape parameter, c, of both Weibull and Log-Weibull distribution correlated with SWH. The correlation between wave period and shape parameters of Weibull and Log-Weibull distribution showed a weak correlation.
基金supported by the National Natural Science Foundation of China (Grant no.61571063, 61472357, 61501100)
文摘Advanced wireless standards of communication like 3GPP and LTE are becoming more and more efficient and with this evolution of communication systems mobile equipment is also become smaller and smaller. Power amplifier designing has become a very crucial task in this era where efficiency and size are the main concern of any designer. In this paper we have design and analyzed X-band Class E Metal-semiconductor field effect transistor(MESFET) based Power Amplifier. This device targets the devices which use OFDM technique to improve their spectral efficiency for the next generation communication systems. Microstrip lines are used to achieve small size for our design instead of lumped components. Load Pull measurements are used to get MESFET input and output impedances optimum values. For linear and non linear operation small signal mathematical model of the design is used. To reduce thermal losses FR4 substrate is used to increase PA efficiency. Our designs shows small values of input and output return loss of about-22.3d B and-23.716 d B achieving a high gain of about25.6 d B respectively, with PAE of about 30 % having stability factor greater than 1 and 21.894 d Bm of output power.