The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyze...The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyzed the characteristics and nowcasting signals of a tornado case that occurred on June 16,2022 in the Guangzhou region.Our findings indicate that the violent contraction of rotation radius and the dramatic increase in rotation speed were important signal characteristics associated with tornado formation.The X-band phased array radar,with its high temporal and spatial resolution,provided an opportunity to capture early warning signals from polarimetric characteristics.The X-band phased array radar demonstrated noteworthy ability to identify apparent tornado vortex signature(TVS)features in a 10-minute lead time,surpassing the capabilities of the CINRAD/SA radar.Additionally,due to its higher scanning frequency,the Xband phased-array radar was capable of consistently identifying TVS with shorter intervals,enabling a more precise tracking of the tornado's path.The application of professional radars,in this case,provides valuable insights for the monitoring of evolutions of severe local storms and even tornadoes and the issuance of early warning signals.展开更多
This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Are...This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.展开更多
The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approach...The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.展开更多
An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability ...An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.展开更多
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites...A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.展开更多
The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of...The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of each radar resolution cell. And then, in terms of the Doppler shift, a retrieval algorithm extracting the vertical displacement of the sea surface has been proposed. The effects induced by radar look-direction and radar spatial resolution are both taken into account in this retrieval algorithm. The comparison between the sea surface spectrum of buoy data and the retrieved spectrum reveals that the function of the radar spatial resolution is equivalent to a low pass filter, impacting especially the spectrum of short gravity waves. The experimental data collected by McMaster IPIX radar are also used to validate the performance of the retrieval algorithm. The derived significant wave height and wave period are compared with the in situ measurements, and the agreement indicates the practicality of the retrieval technology.展开更多
Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A...Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images.Assuming that the ocean is a two-layer finite depth system,we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula.Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.展开更多
Using melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation...Using melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation coefficient(CC)in the ML and NML are obtained in several stable precipitation processes.The prior probability density distributions(PDDs)of the ZH,ZDR and CC are calculated first,and then the probabilities of ZH,ZDR and CC at each radar gate are determined(PBB in the ML and PNB in the NML)by the Bayesian method.When PBB>PNB the gate belongs to the ML,and when PBB<PNB the gate belongs to the NML.The ML identification results with the Bayesian method are contrasUsing melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation coefficient(CC)in the ML and NML are obtained in several stable precipitation processes.The prior probability density distributions(PDDs)of the ZH,ZDR and CC are calculated first,and then the probabilities of ZH,ZDR and CC at each radar gate are determined(PBB in the ML and PNB in the NML)by the Bayesian method.When PBB>PNB the gate belongs to the ML,and when PBB<PNB the gate belongs to the NML.The ML identification results with the Bayesian method are contrasted under the conditions of the independent PDDs and joint PDDs of the ZH,ZDR and CC.The results suggest that MLs can be identified effectively,although there are slight differences between the two methods.Because the values of the polarization parameters are similar in light rain and dry snow,it is difficult for the polarization radar to distinguish them.After using the Bayesian method to identify the ML,light rain and dry snow can be effectively separated with the X-POL observed data.ted under the conditions of the independent PDDs and joint PDDs of the ZH,ZDR and CC.The results suggest that MLs can be identified effectively,although there are slight differences between the two methods.Because the values of the polarization parameters are similar in light rain and dry snow,it is difficult for the polarization radar to distinguish them.After using the Bayesian method to identify the ML,light rain and dry snow can be effectively separated with the X-POL observed data.展开更多
One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continu...One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed.展开更多
Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weat...Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems.展开更多
Ocean wave spectrum and surface currents can be determined from a series of spatial wave images recorded by an X-band marine radar. In the absence of a surface current, the three-dimensional spectral energy found by u...Ocean wave spectrum and surface currents can be determined from a series of spatial wave images recorded by an X-band marine radar. In the absence of a surface current, the three-dimensional spectral energy found by using the series of images will be confined to a trajectory defined by the still water dispersion relationship. The presence of a surface current will make the three-dimensional spectral energy show a corresponding Doppler shill which may determine the current using the least squares method and obtain the directional wave spectrum. On the basis of conventional wave spectrum and directional function, the paper emulates a series of X-band radar images considering shadowing modulation and simulates numerically the threedimensional image spectrum both with and without a surface current, calculates the current velocity by virtue of the Doppler shift, and obtains the two-dimensional image spectrum. Finally the paper analyzes measured wave level elevation-a function of time t to obtain one-dimensional image spectrum, and the data comes from an X-band radar in McMaster University.展开更多
Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological...Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological risk management, hydroelectric power, road and tourism. Both conventional long-range radars and rain-gauges suffer from measurement errors and difficulties in precipitation estimation. For efficient monitoring operation of localized rain events of limited extension and of small basins of interest, an unrealistic extremely dense rain gauge network should be needed. Alternatively C-band or S-band meteorological long range radars are able to monitor rain fields over wide areas, however with not enough space and time resolution, and with high purchase and maintenance costs. Short-range X-band radars for rain monitoring can be a valid compromise solution between the two more common rain measurement and observation instruments. Lots of scientific efforts have already focused on radar-gauge adjustment and quantitative precipitation estimation in order to improve the radar measurement techniques. After some considerations about long range radars and gauge network, this paper presents instead some examples of how X-band mini radars can be very useful for the observation of rainfall events and how they can integrate and supplement long range radars and rain gauge networks. Three case studies are presented: A very localized and intense event, a rainfall event with high temporal and spatial variability and the employ of X-band mini radar in a mountainous region with narrow valleys. The adaptability of such radar devoted to monitor rain is demonstrated.展开更多
We have made observations of X-band radar sea clutter from the sea surface and sea-surface state in the Uraga Suido Traffic Route, which is used by ships entering and leaving Tokyo Bay, and the nearby Daini Kaiho Sea ...We have made observations of X-band radar sea clutter from the sea surface and sea-surface state in the Uraga Suido Traffic Route, which is used by ships entering and leaving Tokyo Bay, and the nearby Daini Kaiho Sea Fortress. We estimated the distributions of reflected amplitudes due to sea clutter using models that assume Weibull, Log-Weibull, Log-normal, and K-distributions. We then compared the results of estimating these distributions with sea-surface state data to investigate the effects of changes in the sea-surface state on the statistical characteristics of sea clutter. As a result, we showed that observed sub-ranges not containing a target conformed better to the Weibull distribution regardless of Significant Wave Height (SWH). Further, sub-ranges conforming to the Log-Weibull or Log-normal distribution in areas contained a target when the SWH was large, and as SWH decreases, sub-ranges conforming to a Log-normal. We also showed that for observed sub-ranges not containing a target, the shape parameter, c, of both Weibull and Log-Weibull distribution correlated with SWH. The correlation between wave period and shape parameters of Weibull and Log-Weibull distribution showed a weak correlation.展开更多
As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow...As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow method is developed for the ocean wave direction inversion of the ocean wave fields imaged by the X-band radar continuously. The proposed algorithm utilizes the echo images received by the X-band wave monitoring radar to estimate the optical flow motion, and then the actual wave propagation direction can be obtained by taking a weighted average of the motion vector for each pixel. Compared with the traditional ocean wave direction inversion method based on frequency-domain, the novel algorithm is fully using a time-domain signal processing method without determination of a current velocity and a modulation transfer function(MTF). In the meantime,the novel algorithm is simple, efficient and there is no need to do something more complicated here. Compared with traditional ocean wave direction inversion method, the ocean wave direction of derived by using this proposed method matches well with that measured by an in situ buoy nearby and the simulation data. These promising results demonstrate the efficiency and accuracy of the algorithm proposed in the paper.展开更多
A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform...A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009.展开更多
The velocity and direction of internal waves(IWs) are important parameters of the ocean,however,traditional observation methods can only obtain the average parameters of IWs for a single location or large area.Herein,...The velocity and direction of internal waves(IWs) are important parameters of the ocean,however,traditional observation methods can only obtain the average parameters of IWs for a single location or large area.Herein,a new method based on optical flow is proposed to derive the phase velocity vectors of IWs from X-band marine radar images.First,the X-band marine radar image sequence is averaged,and ramp correction is used to reduce the attenuation of gray values with increasing radial range.Second,the average propagation direction of the IWs is determined using the two-dimensional Fourier transform of the radar images;two radial profiles along this direction are selected from two adjacent radar images;and then,the average phase velocity of the IWs is estimated from these radial profiles.Third,the averaged radar images are processed via histogram equalization and binarization to reduce the influence of noise on the radar images.Fourth,a weighting factor is determined using the average phase velocity of a reference point;the phase velocities on the wave crest of the IWs are subsequently estimated via the optical flow method.Finally,the proposed method is validated using X-band marine radar image sequences observed on an oil platform in the South China Sea,and the error of the phase velocity is calculated to be 0.000 3–0.073 8 m/s.The application conditions of the proposed method are also discussed using two different types of IW packets.展开更多
When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic...When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.展开更多
Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as inte...Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.展开更多
Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficien...Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficient monitoring operations need continuous, high-resolution and large-coverage data. To monitor and observe extreme rainfall events, often much localized over small basins of interest, and that could frequently causing flash floods, an unrealistic extremely dense rain gauge network should be needed. On the other hand, common large C-band or S-band long range radars do not provide the necessary spatial and temporal resolution. Simple short-range X-band mini weather radar can be a valid compromise solution. The present work shows how a single polarization, non-Doppler and non-coherent, simple and low cost X-band radar allowed monitoring three very intense rainfall events occurred near Turin during July 2014. The events, which caused damages and floods, are detected and monitored in real time with a sample rate of 1 minute and a radial spatial resolution of 60 m, thus allowing to describe the intensity of the precipitation on each small portion of territory. This information could be very useful if used by authorities in charge of Civil Protection in order to avoid inconvenience to people and to monitor dangerous situations.展开更多
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a...A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.展开更多
基金National Key R&D Program of China (2022YFC3004101)Science and Technology Projects of Guangzhou (2023B04J0704,2023B04J0232)+1 种基金Natural Science Foundation of Guangdong Province (2022A15150118141)Key Scientific and Technological Research Project of Guangzhou Meteorological Society (Z202201)。
文摘The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyzed the characteristics and nowcasting signals of a tornado case that occurred on June 16,2022 in the Guangzhou region.Our findings indicate that the violent contraction of rotation radius and the dramatic increase in rotation speed were important signal characteristics associated with tornado formation.The X-band phased array radar,with its high temporal and spatial resolution,provided an opportunity to capture early warning signals from polarimetric characteristics.The X-band phased array radar demonstrated noteworthy ability to identify apparent tornado vortex signature(TVS)features in a 10-minute lead time,surpassing the capabilities of the CINRAD/SA radar.Additionally,due to its higher scanning frequency,the Xband phased-array radar was capable of consistently identifying TVS with shorter intervals,enabling a more precise tracking of the tornado's path.The application of professional radars,in this case,provides valuable insights for the monitoring of evolutions of severe local storms and even tornadoes and the issuance of early warning signals.
文摘This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.
基金Guangzhou Science and Technology Plan Project(202103000030)Guangdong Meteorological Bureau Science and Technology Project(GRMC2020Z08)a project co-funded by the Development Team of Radar Application and Severe Convection Early Warning Technology(GRMCTD202002)。
文摘The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.
基金funded by National High-Tech Research and Development Projects (863 Grant No. 2007AA061901)+2 种基金the National Key Program for Developing Basic Sciences (Grant No. 2012CB417202)the National Natural Science Foundation of China (Grant No. 41175038)the Public Welfare Meteorological Special Project (Grant No. GYHY201106046)
文摘An X-band phased-array meteorological radar (XPAR) was developed in China and will be installed in an airplane to observe precipitation systems for research purposes.In order to examine the observational capability of the XPAR and to test the operating mode and calibration before installation in the airplane,a mobile X-band Doppler radar (XDR) and XPAR were installed at the same site to observe convective precipitation events.Nearby S-band operational radar (SA) data were also collected to examine the reflectivity bias of XPAR.An algorithm for quantitative analysis of reflectivity and velocity differences and radar sensitivity of XPAR is presented.The reflectivity and velocity biases of XPAR are examined with SA and XDR.Reflectivity sensitivities,the horizontal and vertical structures of reflectivity by the three radars are compared and analyzed.The results indicated that while the XPRA with different operating modes can capture the main characteristic of 3D structures of precipitation,and the averaged reflectivity differences between XPAR and XDR,and XDR and SA,were 0.4 dB and 6.6 dB on 13 July and-4.5 dB and 5.1 dB on 2 August 2012,respectively.The minimum observed reflectivities at a range of 50 km for XPAR,XDR and SA were about 15.4 dBZ,13.5 dBZ and-3.5 dBZ,respectively.The bias of velocity between XPAR and XDR was negligible.This study provides a possible method for the quantitative comparison of the XPAR data,as well as the sensitivity of reflectivity,calibration,gain and bias introduced by pulse compression.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04,KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.
基金The National Natural Science Foundation of China under contract Nos 41376179 and 41106153the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404
文摘The line-of-sight velocity of scattering facets is related to the Doppler signals of X-band coherent marine radar from the oceanic surface. First, the sign Doppler Estimator is applied to estimate the Doppler shift of each radar resolution cell. And then, in terms of the Doppler shift, a retrieval algorithm extracting the vertical displacement of the sea surface has been proposed. The effects induced by radar look-direction and radar spatial resolution are both taken into account in this retrieval algorithm. The comparison between the sea surface spectrum of buoy data and the retrieved spectrum reveals that the function of the radar spatial resolution is equivalent to a low pass filter, impacting especially the spectrum of short gravity waves. The experimental data collected by McMaster IPIX radar are also used to validate the performance of the retrieval algorithm. The derived significant wave height and wave period are compared with the in situ measurements, and the agreement indicates the practicality of the retrieval technology.
基金Supported by the Key Program and the Normal Program of the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04 and KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images.Assuming that the ocean is a two-layer finite depth system,we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula.Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.
基金supported by a Beijing Municipal Science and Technology Project (Grant No. Z171100004417008)the National Key R&D Program of China (Grant No. 2018YFF0300102)the National Natural Science Foundation of China (Grant Nos. 41375038 and 41575050)
文摘Using melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation coefficient(CC)in the ML and NML are obtained in several stable precipitation processes.The prior probability density distributions(PDDs)of the ZH,ZDR and CC are calculated first,and then the probabilities of ZH,ZDR and CC at each radar gate are determined(PBB in the ML and PNB in the NML)by the Bayesian method.When PBB>PNB the gate belongs to the ML,and when PBB<PNB the gate belongs to the NML.The ML identification results with the Bayesian method are contrasUsing melting layer(ML)and non-melting layer(NML)data observed with the X-band dual linear polarization Doppler weather radar(X-POL)in Shunyi,Beijing,the reflectivity(ZH),differential reflectivity(ZDR),and correlation coefficient(CC)in the ML and NML are obtained in several stable precipitation processes.The prior probability density distributions(PDDs)of the ZH,ZDR and CC are calculated first,and then the probabilities of ZH,ZDR and CC at each radar gate are determined(PBB in the ML and PNB in the NML)by the Bayesian method.When PBB>PNB the gate belongs to the ML,and when PBB<PNB the gate belongs to the NML.The ML identification results with the Bayesian method are contrasted under the conditions of the independent PDDs and joint PDDs of the ZH,ZDR and CC.The results suggest that MLs can be identified effectively,although there are slight differences between the two methods.Because the values of the polarization parameters are similar in light rain and dry snow,it is difficult for the polarization radar to distinguish them.After using the Bayesian method to identify the ML,light rain and dry snow can be effectively separated with the X-POL observed data.ted under the conditions of the independent PDDs and joint PDDs of the ZH,ZDR and CC.The results suggest that MLs can be identified effectively,although there are slight differences between the two methods.Because the values of the polarization parameters are similar in light rain and dry snow,it is difficult for the polarization radar to distinguish them.After using the Bayesian method to identify the ML,light rain and dry snow can be effectively separated with the X-POL observed data.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX-YW-12-04)the National Natural Science Foundation of China (No. 41030855)+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2008AA09A403)the Marine Public Welfare Project of China (No. 201105032)
文摘One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed.
基金Guangdong Basic and Applied Basic Research Foundation(2020A1515010602)Special Fund of China Meteorological Administration for Innovation and Development(CXFZ2022J063)+4 种基金Special Fund for Forecasters of China Meteorological Administration(CMAYBY2019-082)Science and Technology Planning Program of Guangzhou(201903010101)Key-Area Research and Development Program of Guangdong Province(2020B1111200001)National Natural Science Foundation of China(42075190,41875182)Radar Application and Shortterm Severe-weather Predictions and Warnings Technology Program(GRMCTD202002)。
文摘Based on the observations of a squall line on 11 May 2020 and stratiform precipitation on 6 June 2020 from two X-band dual-polarization phased array weather radars(DP-PAWRs)and an S-band dual-polarization Doppler weather radar(CINRAD/SA-D),the data reliability of DP-PAWR and its ability to detect the fine structures of mesoscale weather systems were assessed.After location matching,the observations of DP-PAWR and CINRAD/SA-D were compared in terms of reflectivity(Z_(H)),radial velocity(V),differential reflectivity(Z_(DR)),and specific differential phase(K_(DP)).The results showed that:(1)DP-PAWR has better ability to detect mesoscale weather systems than CINRAD/SAD;the multi-elevation-angles scanning of the RHI mode enables DP-PAWR to obtain a wider detection range in the vertical direction.(2)DP-PAWR’s Z_(H)and V structures are acceptable,while its sensitivity is worse than that of CINRAD/SA-D.The Z H suffers from attenuation and the Z_(H)area distribution is distorted around strong rainfall regions.(3)DP-PAWR’s Z_(DR)is close to a normal distribution but slightly smaller than that of CINRAD/SA-D.The K_(DP)products of DP-PAWR have much higher sensitivity,showing a better indication of precipitation.(4)DP-PAWR is capable of revealing a detailed and complete structure of the evolution of the whole storm and the characteristics of particle phase variations during the process of triggering and enhancement of a small cell in the front of a squall line,as well as the merging of the cell with the squall line,which cannot be observed by CINRAD/SA-D.With its fast volume scan feature and dual-polarization detection capability,DP-PAWR shows great potential in further understanding the development and evolution mechanisms of meso-γ-scale and microscale weather systems.
基金Supported by the National Natural Science Foundation of China (60571065, 40406020)
文摘Ocean wave spectrum and surface currents can be determined from a series of spatial wave images recorded by an X-band marine radar. In the absence of a surface current, the three-dimensional spectral energy found by using the series of images will be confined to a trajectory defined by the still water dispersion relationship. The presence of a surface current will make the three-dimensional spectral energy show a corresponding Doppler shill which may determine the current using the least squares method and obtain the directional wave spectrum. On the basis of conventional wave spectrum and directional function, the paper emulates a series of X-band radar images considering shadowing modulation and simulates numerically the threedimensional image spectrum both with and without a surface current, calculates the current velocity by virtue of the Doppler shift, and obtains the two-dimensional image spectrum. Finally the paper analyzes measured wave level elevation-a function of time t to obtain one-dimensional image spectrum, and the data comes from an X-band radar in McMaster University.
文摘Quantitative precipitation estimation and rainfall monitoring based on meteorological data, potentially provides continuous, high-resolution and large-coverage data, are of high practical use: Think of hydrogeological risk management, hydroelectric power, road and tourism. Both conventional long-range radars and rain-gauges suffer from measurement errors and difficulties in precipitation estimation. For efficient monitoring operation of localized rain events of limited extension and of small basins of interest, an unrealistic extremely dense rain gauge network should be needed. Alternatively C-band or S-band meteorological long range radars are able to monitor rain fields over wide areas, however with not enough space and time resolution, and with high purchase and maintenance costs. Short-range X-band radars for rain monitoring can be a valid compromise solution between the two more common rain measurement and observation instruments. Lots of scientific efforts have already focused on radar-gauge adjustment and quantitative precipitation estimation in order to improve the radar measurement techniques. After some considerations about long range radars and gauge network, this paper presents instead some examples of how X-band mini radars can be very useful for the observation of rainfall events and how they can integrate and supplement long range radars and rain gauge networks. Three case studies are presented: A very localized and intense event, a rainfall event with high temporal and spatial variability and the employ of X-band mini radar in a mountainous region with narrow valleys. The adaptability of such radar devoted to monitor rain is demonstrated.
文摘We have made observations of X-band radar sea clutter from the sea surface and sea-surface state in the Uraga Suido Traffic Route, which is used by ships entering and leaving Tokyo Bay, and the nearby Daini Kaiho Sea Fortress. We estimated the distributions of reflected amplitudes due to sea clutter using models that assume Weibull, Log-Weibull, Log-normal, and K-distributions. We then compared the results of estimating these distributions with sea-surface state data to investigate the effects of changes in the sea-surface state on the statistical characteristics of sea clutter. As a result, we showed that observed sub-ranges not containing a target conformed better to the Weibull distribution regardless of Significant Wave Height (SWH). Further, sub-ranges conforming to the Log-Weibull or Log-normal distribution in areas contained a target when the SWH was large, and as SWH decreases, sub-ranges conforming to a Log-normal. We also showed that for observed sub-ranges not containing a target, the shape parameter, c, of both Weibull and Log-Weibull distribution correlated with SWH. The correlation between wave period and shape parameters of Weibull and Log-Weibull distribution showed a weak correlation.
基金The National Key Research and Development Program of China under contract No.2016YFC0800405the Shanghai Municipal Science and Technology Project of China under contract No.15DZ0500600the Specialized Research Fund for the Doctoral Program of Higher Education of China under contract No.2014212020203
文摘As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow method is developed for the ocean wave direction inversion of the ocean wave fields imaged by the X-band radar continuously. The proposed algorithm utilizes the echo images received by the X-band wave monitoring radar to estimate the optical flow motion, and then the actual wave propagation direction can be obtained by taking a weighted average of the motion vector for each pixel. Compared with the traditional ocean wave direction inversion method based on frequency-domain, the novel algorithm is fully using a time-domain signal processing method without determination of a current velocity and a modulation transfer function(MTF). In the meantime,the novel algorithm is simple, efficient and there is no need to do something more complicated here. Compared with traditional ocean wave direction inversion method, the ocean wave direction of derived by using this proposed method matches well with that measured by an in situ buoy nearby and the simulation data. These promising results demonstrate the efficiency and accuracy of the algorithm proposed in the paper.
基金The National Natural Science Foundation of China under contract No.61601132
文摘A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009.
基金The National Natural Science Foundation of China under contract Nos 41620104003 and 42027805the National Natural Science Youth Foundation of China under contract No.41506199。
文摘The velocity and direction of internal waves(IWs) are important parameters of the ocean,however,traditional observation methods can only obtain the average parameters of IWs for a single location or large area.Herein,a new method based on optical flow is proposed to derive the phase velocity vectors of IWs from X-band marine radar images.First,the X-band marine radar image sequence is averaged,and ramp correction is used to reduce the attenuation of gray values with increasing radial range.Second,the average propagation direction of the IWs is determined using the two-dimensional Fourier transform of the radar images;two radial profiles along this direction are selected from two adjacent radar images;and then,the average phase velocity of the IWs is estimated from these radial profiles.Third,the averaged radar images are processed via histogram equalization and binarization to reduce the influence of noise on the radar images.Fourth,a weighting factor is determined using the average phase velocity of a reference point;the phase velocities on the wave crest of the IWs are subsequently estimated via the optical flow method.Finally,the proposed method is validated using X-band marine radar image sequences observed on an oil platform in the South China Sea,and the error of the phase velocity is calculated to be 0.000 3–0.073 8 m/s.The application conditions of the proposed method are also discussed using two different types of IW packets.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(Nos.41076119,41176160,41476158)+4 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Natural Science Youth Foundation of Jiangsu Province(No.BK2012467)the Natural Science State Key Foundation of Jiangsu Province(No.BK2011008)the National Natural Science Youth Foundation of China(No.41206171)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(No.S8113078001)
文摘When imaging ocean surface waves by X-band marine radar, the radar backscatter from the sea surface is modulated by the long surface gravity waves. The modulation transfer function (MTF) comprises tilt, hydrodynamic, and shadowing modulations. A conventional linear MTF was derived using HH-polarized radar observations under conditions of deep water. In this study, we propose a new quadratic polynomial MTF based on W-polarized radar measurements taken from heterogeneous nearshore wave fields. This new MTF is obtained using a radar-observed image spectrum and in situ buoy-measured wave frequency spectrum. We validate the MTF by comparing peak and mean wave periods retrieved from X-band marine radar image sequences with those measured by the buoy. It is shown that the retrieval accuracies of peak and mean wave periods of the new MTF are better than the conventional MTF. The results also show that the bias and root mean square errors of the peak and mean wave periods of the new MTF are 0.05 and 0.88 s, and 0.32 and 0.53 s, respectively, while those of the conventional MTF are 0.61 and 0.98 s, and 1.39 and 1.48 s, respectively. Moreover, it is also shown that the retrieval results are insensitive to the coefficients in the proposed MTF.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2012AA091701,2012AA091702)the National Natural Science Foundation of China(No.61401316)+1 种基金the PhD.Programs Foundation of Ministry of Education of China(No.20130141110053)the Fundamental Research Fund for the Central Universities of China(No.2014212020203)
文摘Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.
文摘Real time rainfall events monitoring is very important for a large number of reasons: Civil Protection, hydrogeological risk management, hydroelectric power purposes, road and traffic regulation, and tourism. Efficient monitoring operations need continuous, high-resolution and large-coverage data. To monitor and observe extreme rainfall events, often much localized over small basins of interest, and that could frequently causing flash floods, an unrealistic extremely dense rain gauge network should be needed. On the other hand, common large C-band or S-band long range radars do not provide the necessary spatial and temporal resolution. Simple short-range X-band mini weather radar can be a valid compromise solution. The present work shows how a single polarization, non-Doppler and non-coherent, simple and low cost X-band radar allowed monitoring three very intense rainfall events occurred near Turin during July 2014. The events, which caused damages and floods, are detected and monitored in real time with a sample rate of 1 minute and a radial spatial resolution of 60 m, thus allowing to describe the intensity of the precipitation on each small portion of territory. This information could be very useful if used by authorities in charge of Civil Protection in order to avoid inconvenience to people and to monitor dangerous situations.
文摘A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.