期刊文献+
共找到46,407篇文章
< 1 2 250 >
每页显示 20 50 100
Extraction of Sea-State Parameters with an X-Band Radar 被引量:1
1
作者 WU Xiongbin WU Yanqin CHENG Feng OUYANG Wenjie KE Hengyu 《Wuhan University Journal of Natural Sciences》 CAS 2008年第1期55-61,共7页
Ocean wave spectrum and surface currents can be determined from a series of spatial wave images recorded by an X-band marine radar. In the absence of a surface current, the three-dimensional spectral energy found by u... Ocean wave spectrum and surface currents can be determined from a series of spatial wave images recorded by an X-band marine radar. In the absence of a surface current, the three-dimensional spectral energy found by using the series of images will be confined to a trajectory defined by the still water dispersion relationship. The presence of a surface current will make the three-dimensional spectral energy show a corresponding Doppler shill which may determine the current using the least squares method and obtain the directional wave spectrum. On the basis of conventional wave spectrum and directional function, the paper emulates a series of X-band radar images considering shadowing modulation and simulates numerically the threedimensional image spectrum both with and without a surface current, calculates the current velocity by virtue of the Doppler shift, and obtains the two-dimensional image spectrum. Finally the paper analyzes measured wave level elevation-a function of time t to obtain one-dimensional image spectrum, and the data comes from an X-band radar in McMaster University. 展开更多
关键词 x-band radar Fourier transform wave spectrum
下载PDF
A novel algorithm for ocean wave direction inversion from X-band radar images based on optical flow method
2
作者 WANG Li CHENG Yunfei +1 位作者 HONG Lijuan LIU Xinyu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第3期88-93,共6页
As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow... As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow method is developed for the ocean wave direction inversion of the ocean wave fields imaged by the X-band radar continuously. The proposed algorithm utilizes the echo images received by the X-band wave monitoring radar to estimate the optical flow motion, and then the actual wave propagation direction can be obtained by taking a weighted average of the motion vector for each pixel. Compared with the traditional ocean wave direction inversion method based on frequency-domain, the novel algorithm is fully using a time-domain signal processing method without determination of a current velocity and a modulation transfer function(MTF). In the meantime,the novel algorithm is simple, efficient and there is no need to do something more complicated here. Compared with traditional ocean wave direction inversion method, the ocean wave direction of derived by using this proposed method matches well with that measured by an in situ buoy nearby and the simulation data. These promising results demonstrate the efficiency and accuracy of the algorithm proposed in the paper. 展开更多
关键词 x-band radar optical flow weighted average ocean wave direction radar image
下载PDF
A curvelet-based method to determine wave directions from nautical X-band radar images
3
作者 ZHA Guozhen HE Qingyou +1 位作者 GUAN Changlong CHEN Jitao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第1期11-19,共9页
A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform... A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009. 展开更多
关键词 x-band radar wave direction surface wave curvelet transform
下载PDF
Measurements of ocean wave and current field using dual polarized X-band radar 被引量:4
4
作者 崔利民 何宜军 +1 位作者 申辉 吕海滨 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第5期1021-1028,共8页
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites... A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m. 展开更多
关键词 X波段雷达 双偏振 海浪 双极化雷达 测量 流场 海洋浮标 表面流速
下载PDF
A new method for the estimation of oceanic mixed-layer depth using shipboard X-band radar images 被引量:3
5
作者 吕海滨 何宜军 +2 位作者 申辉 崔利民 窦长娥 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第5期962-967,共6页
Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A... Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea.The studied images show three nonlinear internal waves in a packet.A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images.Assuming that the ocean is a two-layer finite depth system,we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula.Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets. 展开更多
关键词 混合层深度 X波段雷达 图像估计 海洋 深度计算 南海东北部 RADON
下载PDF
Extraction of internal wave amplitude from nautical X-Band radar observations 被引量:2
6
作者 查国震 林明森 +2 位作者 申辉 何宜军 吕海滨 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2012年第3期497-505,共9页
One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continu... One of the most important parameters for oceanic internal waves (IWs) is their amplitude. We have developed a method to retrieve the IW amplitude from nautical X-Band radar images based on the KdV equation for continuous stratified finite depth system. We have also tested the method of measuring the amplitude of IWs from X-Band radar backscatter image sequences acquired on June 2009 in the northeastern South China Sea. The method was applied in several radar images. Experiments show that the retrieval amplitudes are consistent with the in-situ observational amplitudes of IWs by using the towed thermistor chain and conductivity-temperature-depth (CTD) profile. The uncertainty of the method is also discussed. 展开更多
关键词 海洋内波 振幅 雷达观测 X-波段 X波段雷达 提取 图像检索 KDV方程
下载PDF
Effect of Changes in Sea-Surface State on Statistical Characteristics of Sea Clutter with X-Band Radar 被引量:1
7
作者 Seishiro Ishii Syuji Sayama Koichi Mizutani 《Wireless Engineering and Technology》 2011年第3期175-183,共9页
We have made observations of X-band radar sea clutter from the sea surface and sea-surface state in the Uraga Suido Traffic Route, which is used by ships entering and leaving Tokyo Bay, and the nearby Daini Kaiho Sea ... We have made observations of X-band radar sea clutter from the sea surface and sea-surface state in the Uraga Suido Traffic Route, which is used by ships entering and leaving Tokyo Bay, and the nearby Daini Kaiho Sea Fortress. We estimated the distributions of reflected amplitudes due to sea clutter using models that assume Weibull, Log-Weibull, Log-normal, and K-distributions. We then compared the results of estimating these distributions with sea-surface state data to investigate the effects of changes in the sea-surface state on the statistical characteristics of sea clutter. As a result, we showed that observed sub-ranges not containing a target conformed better to the Weibull distribution regardless of Significant Wave Height (SWH). Further, sub-ranges conforming to the Log-Weibull or Log-normal distribution in areas contained a target when the SWH was large, and as SWH decreases, sub-ranges conforming to a Log-normal. We also showed that for observed sub-ranges not containing a target, the shape parameter, c, of both Weibull and Log-Weibull distribution correlated with SWH. The correlation between wave period and shape parameters of Weibull and Log-Weibull distribution showed a weak correlation. 展开更多
关键词 x-band radar Sea CLUTTER SIGNIFICANT Wave HEIGHT Weibull DISTRIBUTION Log-Normal DISTRIBUTION
下载PDF
Ocean surface current retrieval and imaging with a new shore-based X-band radar based on time-shifted up-and-down linear frequency modulated signal
8
作者 Yijun He Xin Song +2 位作者 Baochang Liu Na Yi Xiuzhong Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第3期112-121,共10页
This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down contin... This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging.The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM)signal and the downward LFM signal.Owing to the Doppler frequency shift from the sea surface,a range offset,which is proportional to the radial velocity of the sea surface,occurs between the upward and downward LFM signals.By using the least-squares linear fitting method in the transformed domain,the range offset can be measured and the current velocity can be retrieved.Finally,we verify the accuracy of current measurement with simulation results. 展开更多
关键词 shore-based radars signal processing ocean surface currents up-and-down CWLFM
下载PDF
Characterization and Application of S-Band Polarimetric Radar and X-Band Phased Array Radar for a Tornadic Storm Event on June 16,2022
9
作者 陈炳洪 傅佩玲 +3 位作者 张羽 苏冉 田聪聪 陈超 《Journal of Tropical Meteorology》 SCIE 2024年第2期189-199,共11页
The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyze... The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyzed the characteristics and nowcasting signals of a tornado case that occurred on June 16,2022 in the Guangzhou region.Our findings indicate that the violent contraction of rotation radius and the dramatic increase in rotation speed were important signal characteristics associated with tornado formation.The X-band phased array radar,with its high temporal and spatial resolution,provided an opportunity to capture early warning signals from polarimetric characteristics.The X-band phased array radar demonstrated noteworthy ability to identify apparent tornado vortex signature(TVS)features in a 10-minute lead time,surpassing the capabilities of the CINRAD/SA radar.Additionally,due to its higher scanning frequency,the Xband phased-array radar was capable of consistently identifying TVS with shorter intervals,enabling a more precise tracking of the tornado's path.The application of professional radars,in this case,provides valuable insights for the monitoring of evolutions of severe local storms and even tornadoes and the issuance of early warning signals. 展开更多
关键词 TORNADOES x-band phased array radar MESOCYCLONE rotation radius
下载PDF
Reduction of rain effect on wave height estimation from marine X-band radar images using unsupervised generative adversarial networks
10
作者 Li Wang Hui Mei +1 位作者 Weilun Luo Yunfei Cheng 《International Journal of Digital Earth》 SCIE EI 2023年第1期2356-2373,共18页
An intelligent single radar image de-raining method based on unsupervised self-attention generative adversarial networks is proposed to improve the accuracy of wave height parameter inversion results.The method builds... An intelligent single radar image de-raining method based on unsupervised self-attention generative adversarial networks is proposed to improve the accuracy of wave height parameter inversion results.The method builds a trainable end-to-end de-raining model with an unsupervised cycle-consistent adversarial network as an AI framework,which does not require pairs of rain-contaminated and corresponding ground-truth rain-free images for training.The model is trained by feeding rain-contaminated and clean radar images in an unpaired manner,and the atmospheric scattering model parameters are not required as a prior condition.Additionally,a self-attention mechanism is introduced into the model,allowing it to focus on rain clutter when processing radar images.This combines global and local rain clutter context information to output more accurate and clear de-raining radar images.The proposed method is validated by applying it to actualfield test data,which shows that compared with the wave height derived from the original rain-contaminated data,the root-mean-square error is reduced by 0.11 m and the correlation coefficient of the wave height is increased by 14%using the de-raining method.These results demonstrate that the method effectively reduces the impact of rain on the accuracy of wave height parameter estimation from marine X-band radar images. 展开更多
关键词 Generative adversarial networks self-attention mechanism unsupervised model marine x-band radar wave height
原文传递
Application of X-band Polarimetric Phased-array Radars in Quantitative Precipitation Estimation 被引量:1
11
作者 张羽 刘显通 +3 位作者 陈炳洪 冯嘉宝 曾琳 田聪聪 《Journal of Tropical Meteorology》 SCIE 2023年第1期142-152,共11页
The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approach... The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy. 展开更多
关键词 x-band polarimetric phased-array radar raindrop spectrum quantitative precipitation estimation
下载PDF
Co-Sharing Waveform Design for Millimeter-Wave Radar Communication Systems
12
作者 Cui Gaofeng He Mengmin +2 位作者 Xu Lexi Wang Changheng Wang Weidong 《China Communications》 SCIE CSCD 2024年第6期305-318,共14页
Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co... Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation. 展开更多
关键词 co-sharing waveform MILLIMETER-WAVE radar communication radar sensing range and velocity estimation
下载PDF
Analysis of the joint detection capability of the SMILE satellite and EISCAT-3D radar 被引量:1
13
作者 JiaoJiao Zhang TianRan Sun +7 位作者 XiZheng Yu DaLin Li Hang Li JiaQi Guo ZongHua Ding Tao Chen Jian Wu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期299-306,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite European Incoherent Scatter Sciences Association(EISCAT)-3D radar joint detection
下载PDF
A target parameter estimation method via atom-reconstruction in radar mainlobe jamming
14
作者 ZHOU Bilei LIU Weijian +5 位作者 LI Rongfeng CHEN Hui ZHANG Liang DU Qinglei LI Binbin CHEN Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期350-360,共11页
Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target... Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target parameters and target direction estimation is difficult in radar MLJ.A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper.The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle.Precisely,the eigen-projection matrix processing(EMP)algorithm is adopted to suppress the MLJ,and the target range is estimated effectively through the beamforming and pulse compression.Then the target angle can be effectively estimated by the atom-reconstruction method.Without any prior knowledge,the MLJ can be canceled,and the angle estimation accuracy is well preserved.Furthermore,the proposed method does not have strict requirement for radar array construction,and it can be applied for linear array and planar array.Moreover,the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth(or elevation)equals to the jamming azimuth(or elevation),because the MLJ is suppressed in spatial plane dimension. 展开更多
关键词 mainlobe jamming ANTI-JAMMING atom-reconstruction radar
下载PDF
Overview of radar detection methods for low altitude targets in marine environments
15
作者 YANG Yong YANG Boyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期1-13,共13页
In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance... In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments. 展开更多
关键词 radar sea clutter multipath scattering detection low altitude target
下载PDF
Probabilistic modeling of multifunction radars with autoregressive kernel mixture network
16
作者 Hancong Feng Kaili.Jiang +4 位作者 Zhixing Zhou Yuxin Zhao Kailun Tian Haixin Yan Bin Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期275-288,共14页
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai... The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection. 展开更多
关键词 Probabilistic forecasting Multifunction radar Unsupervised learning Change point detection Outlier detection
下载PDF
Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
17
作者 Jiang HUANGFU Zhiqun HU +2 位作者 Jiafeng ZHENG Lirong WANG Yongjie ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1147-1160,共14页
Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a mult... Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods. 展开更多
关键词 polarimetric radar quantitative precipitation estimation deep learning single-parameter network multi-parameter network
下载PDF
Robust adaptive radar beamforming based on iterative training sample selection using kurtosis of generalized inner product statistics
18
作者 TIAN Jing ZHANG Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期24-30,共7页
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s... In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results. 展开更多
关键词 adaptive radar beamforming training sample selection non-homogeneous detector electronic jamming jamming suppression
下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
19
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling radar stealth Thermal insulation Computer simulation technology
下载PDF
Wideband radar cross-section reduction by a double-layer-plasma-based metasurface
20
作者 赵智明 李小平 +2 位作者 董果香 刘旭 牟相超 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期159-168,共10页
Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction... Reduction of the radar cross-section(RCS) is the key to stealth technology. To improve the RCS reduction effect of the designed checkerboard metasurface and overcome the limitation of thinlayer plasma in RCS reduction technology, a double-layer-plasma-based metasurface—composed of a checkerboard metasurface, a double-layer plasma and an air gap between them—was investigated. Based on the principle of backscattering cancellation, we designed a checkerboard metasurface composed of different artificial magnetic conductor units;the checkerboard metasurface can reflect vertically incident electromagnetic(EM) waves in four different inclined directions to reduce the RCS. Full-wave simulations confirm that the doublelayer-plasma-based metasurface can improve the RCS reduction effect of the metasurface and the plasma. This is because in a band lower than the working band of the metasurface, the RCS reduction effect is mainly improved by the plasma layer. In the working band of the metasurface,impedance mismatching between the air gap and first plasma layer and between first and second plasma layers cause the scattered waves to become more dispersed, so the propagation path of the EM waves in the plasma becomes longer, increasing the absorption of the EM waves by the plasma. Thus, the RCS reduction effect is enhanced. The double-layer-plasma-based metasurface can be insensitive to the polarization of the incoming EM waves, and can also maintain a satisfactory RCS reduction band when the incident waves are oblique. 展开更多
关键词 stealth technology radar cross-section(RCS)reduction backscattering cancellation double-layer-plasma-based metasurface
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部