The new 1 kW power module for ADS project needs the optimization of cooling design including water flow and tunnel layout, and the water flow of three tons per hour was chosen to be a goal for a 20 kW power source.Acc...The new 1 kW power module for ADS project needs the optimization of cooling design including water flow and tunnel layout, and the water flow of three tons per hour was chosen to be a goal for a 20 kW power source.According to analysis from the insertion and integrated loss, about 24 modules were integrated into the rated power. Thus, every module has a cooling flow of 2.1 L/min for RF heat load and power supply loss, which is very hard to achieve if no special consideration and techniques. A new thermal simulation method was introduced for thermal analysis of cooling plate through CST multi-physics suite,especially for temperature of power LDMOS transistor.Some specific measures carried out for the higher heat transfer were also presented in this paper.展开更多
Advanced wireless standards of communication like 3GPP and LTE are becoming more and more efficient and with this evolution of communication systems mobile equipment is also become smaller and smaller. Power amplifier...Advanced wireless standards of communication like 3GPP and LTE are becoming more and more efficient and with this evolution of communication systems mobile equipment is also become smaller and smaller. Power amplifier designing has become a very crucial task in this era where efficiency and size are the main concern of any designer. In this paper we have design and analyzed X-band Class E Metal-semiconductor field effect transistor(MESFET) based Power Amplifier. This device targets the devices which use OFDM technique to improve their spectral efficiency for the next generation communication systems. Microstrip lines are used to achieve small size for our design instead of lumped components. Load Pull measurements are used to get MESFET input and output impedances optimum values. For linear and non linear operation small signal mathematical model of the design is used. To reduce thermal losses FR4 substrate is used to increase PA efficiency. Our designs shows small values of input and output return loss of about-22.3d B and-23.716 d B achieving a high gain of about25.6 d B respectively, with PAE of about 30 % having stability factor greater than 1 and 21.894 d Bm of output power.展开更多
An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influ...An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.展开更多
An X-band four-way combined GaN solid-state power amplifier module is fabricated based on a self- developed AlGaN/GaN HEMT with 2.5-mm gate width technology on SiC substrate. The module consists of an Al- GaN/GaN HEMT...An X-band four-way combined GaN solid-state power amplifier module is fabricated based on a self- developed AlGaN/GaN HEMT with 2.5-mm gate width technology on SiC substrate. The module consists of an Al- GaN/GaN HEMT, Wilkinson power hybrids, a DC-bias circuit and microstrip matching circuits. For the stability of the amplifier module, special RC networks at the input and output, a resistor between the DC power supply and a transistor gate at the input and 3λ/4 Wilkinson power hybrids are used for the cancellation of low frequency self-oscillation and crosstalk of each amplifier. Under Vds = 27 V, Vgs = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5 dB with a power added efficiency of 17.9%, and an output power of 42.93 dBm; the power gain compression is 2 dB. For a four-way combined solid-state amplifier, the power combining efficiency is 67.5%. It is concluded that the reduction in combining efficiency results from the non-identical GaN HMET, the loss of the hybrid coupler and the circuit fabricating errors of each one-way amplifier.展开更多
Based on a self-developed A1GaN/GaN HEMT with 2.5 mm gate width technology on a SiC substrate, an X-band GaN combined solid-state power amplifier module is fabricated. The module consists of an AIGaN/GaN HEMT, Wilkins...Based on a self-developed A1GaN/GaN HEMT with 2.5 mm gate width technology on a SiC substrate, an X-band GaN combined solid-state power amplifier module is fabricated. The module consists of an AIGaN/GaN HEMT, Wilkinson power couplers, DC-bias circuit and microstrip line. For each amplifier, we use a bipolar DC power source. Special RC networks at the input and output and a resistor between the DC power source and the gate of the transistor at the input are used for cancellation of self-oscillation and crosstalk of low-frequency of each amplifier. At the same time, branches of length 3λ/4 for Wilkinson power couplers are designed for the elimination of self-oscillation of the two amplifiers. Microstrip stub lines are used for input matching and output matching. Under Vds = 27 V, Vgs = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5.6 dB with power added efficiency of 23.4%, and output power of 41.46 dBm (14 W), and the power gain compression is 3 dB. Between 8 and 8.5 GHz, the variation of output power is less than 1.5 dB.展开更多
A flat gain two-stage MMIC power amplifier with a 2.8 GHz bandwidth is successfully developed for X band frequency application based on a fully integrated micro-strip Al GaN/GaN HEMT technology on a semiinsulating Si ...A flat gain two-stage MMIC power amplifier with a 2.8 GHz bandwidth is successfully developed for X band frequency application based on a fully integrated micro-strip Al GaN/GaN HEMT technology on a semiinsulating Si C substrate. Designed with a binary-cluster matching structure integrated with RC networks and LRC networks, the developed power MMIC gets a very flat small signal gain of 15 dB with a gain ripple of 0.35 dB over 9.1–11.9 GHz at the drain bias of 20 V. These RC networks are very easy to improve the stability of used GaN HEMTs with tolerance to the MMIC technology. Inside the frequency range of 9–11.2 GHz where the measurement system calibrated, the amplifier delivers a pulsed output power of 39 dBm and an associated power added efficiency of about 20% at 28 V without saturation, as the available RF power is limited.展开更多
Recent results in the development of diode-driven high energy, high repetition rate, picosecond lasers, including the demonstration of a cryogenic Yb:YAG active mirror amplifier that produces 1.5 J pulses at 500 Hz re...Recent results in the development of diode-driven high energy, high repetition rate, picosecond lasers, including the demonstration of a cryogenic Yb:YAG active mirror amplifier that produces 1.5 J pulses at 500 Hz repetition rate(0.75 kW average power) are reviewed. These pulses are compressed resulting in the generation of ~5 ps duration,1 J pulses with 0.5 kW average power. A full characterization of this high power cryogenic amplifier, including atwavelength interferometry of the active region under >1 kW average power pump conditions, is presented. An initial demonstration of operation at 1 kW average power(1 J, 1 k Hz) is reported.展开更多
基金supported by the ‘‘strategic priority research program’’ of the Chinese Academy of Sciences(No.XDA030205)
文摘The new 1 kW power module for ADS project needs the optimization of cooling design including water flow and tunnel layout, and the water flow of three tons per hour was chosen to be a goal for a 20 kW power source.According to analysis from the insertion and integrated loss, about 24 modules were integrated into the rated power. Thus, every module has a cooling flow of 2.1 L/min for RF heat load and power supply loss, which is very hard to achieve if no special consideration and techniques. A new thermal simulation method was introduced for thermal analysis of cooling plate through CST multi-physics suite,especially for temperature of power LDMOS transistor.Some specific measures carried out for the higher heat transfer were also presented in this paper.
基金supported by the National Natural Science Foundation of China (Grant no.61571063, 61472357, 61501100)
文摘Advanced wireless standards of communication like 3GPP and LTE are becoming more and more efficient and with this evolution of communication systems mobile equipment is also become smaller and smaller. Power amplifier designing has become a very crucial task in this era where efficiency and size are the main concern of any designer. In this paper we have design and analyzed X-band Class E Metal-semiconductor field effect transistor(MESFET) based Power Amplifier. This device targets the devices which use OFDM technique to improve their spectral efficiency for the next generation communication systems. Microstrip lines are used to achieve small size for our design instead of lumped components. Load Pull measurements are used to get MESFET input and output impedances optimum values. For linear and non linear operation small signal mathematical model of the design is used. To reduce thermal losses FR4 substrate is used to increase PA efficiency. Our designs shows small values of input and output return loss of about-22.3d B and-23.716 d B achieving a high gain of about25.6 d B respectively, with PAE of about 30 % having stability factor greater than 1 and 21.894 d Bm of output power.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016801)
文摘An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.
基金supported by the National Natural Science Foundation of China(Nos.60736033,60676048).
文摘An X-band four-way combined GaN solid-state power amplifier module is fabricated based on a self- developed AlGaN/GaN HEMT with 2.5-mm gate width technology on SiC substrate. The module consists of an Al- GaN/GaN HEMT, Wilkinson power hybrids, a DC-bias circuit and microstrip matching circuits. For the stability of the amplifier module, special RC networks at the input and output, a resistor between the DC power supply and a transistor gate at the input and 3λ/4 Wilkinson power hybrids are used for the cancellation of low frequency self-oscillation and crosstalk of each amplifier. Under Vds = 27 V, Vgs = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5 dB with a power added efficiency of 17.9%, and an output power of 42.93 dBm; the power gain compression is 2 dB. For a four-way combined solid-state amplifier, the power combining efficiency is 67.5%. It is concluded that the reduction in combining efficiency results from the non-identical GaN HMET, the loss of the hybrid coupler and the circuit fabricating errors of each one-way amplifier.
基金Project supported by the National Natural Science Foundation of China (Nos.60736033,60676048)
文摘Based on a self-developed A1GaN/GaN HEMT with 2.5 mm gate width technology on a SiC substrate, an X-band GaN combined solid-state power amplifier module is fabricated. The module consists of an AIGaN/GaN HEMT, Wilkinson power couplers, DC-bias circuit and microstrip line. For each amplifier, we use a bipolar DC power source. Special RC networks at the input and output and a resistor between the DC power source and the gate of the transistor at the input are used for cancellation of self-oscillation and crosstalk of low-frequency of each amplifier. At the same time, branches of length 3λ/4 for Wilkinson power couplers are designed for the elimination of self-oscillation of the two amplifiers. Microstrip stub lines are used for input matching and output matching. Under Vds = 27 V, Vgs = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5.6 dB with power added efficiency of 23.4%, and output power of 41.46 dBm (14 W), and the power gain compression is 3 dB. Between 8 and 8.5 GHz, the variation of output power is less than 1.5 dB.
文摘A flat gain two-stage MMIC power amplifier with a 2.8 GHz bandwidth is successfully developed for X band frequency application based on a fully integrated micro-strip Al GaN/GaN HEMT technology on a semiinsulating Si C substrate. Designed with a binary-cluster matching structure integrated with RC networks and LRC networks, the developed power MMIC gets a very flat small signal gain of 15 dB with a gain ripple of 0.35 dB over 9.1–11.9 GHz at the drain bias of 20 V. These RC networks are very easy to improve the stability of used GaN HEMTs with tolerance to the MMIC technology. Inside the frequency range of 9–11.2 GHz where the measurement system calibrated, the amplifier delivers a pulsed output power of 39 dBm and an associated power added efficiency of about 20% at 28 V without saturation, as the available RF power is limited.
基金supported by the U.S. Department of Energy Accelerator Stewardship programme, Office of High Energy Physics, Office of Science under award DE-SC0016136support by the U.S. Department of Energy, Office of Science SBIR programme under award DE-SC0011375
文摘Recent results in the development of diode-driven high energy, high repetition rate, picosecond lasers, including the demonstration of a cryogenic Yb:YAG active mirror amplifier that produces 1.5 J pulses at 500 Hz repetition rate(0.75 kW average power) are reviewed. These pulses are compressed resulting in the generation of ~5 ps duration,1 J pulses with 0.5 kW average power. A full characterization of this high power cryogenic amplifier, including atwavelength interferometry of the active region under >1 kW average power pump conditions, is presented. An initial demonstration of operation at 1 kW average power(1 J, 1 k Hz) is reported.