Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects i...Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects in the X-ray inspection efficiently.In particular,in the Ball Grid Array inspection of X-ray images,it is difficult to accurately segment the regions of occluded solder balls and detect defects inside solder balls.In this paper,we present a novel automatic inspection algorithm that segments solder balls,and detects defects fast and efficiently when solder balls are occluded.The proposed algorithm consists of two stages.In the first stage,the defective candidates or defects are determined through the following four steps:(i)image preprocessing such as noise removal,contrast enhancement,binarization,connected component,and morphology,(ii)limiting the inspec-tion area to the ball regions and determining if the ball regions are occluded,(iii)segmenting each ball region into one or more regions with similar gray values,and(iv)determining whether there are defects or defective candidates in the regions using a weighted sum of local threshold on local variance.If there are defective candidates,the determination of defects is finally made in the following stage.In the second stage,defects are detected using the automated inspection technique based on oblique computed tomography.The 3D precision inspection process is divided into four steps:(i)obtaining 360 projection images(one image per degree)rotating the object from 0 to 360 degrees,(ii)reconstructing a 3D image from the 360 projected images,(iii)finding the center slice of gravity for solder balls from the axial slice images in the z-direction,and getting the inspection intervals between the upper bound and the lower bound from the center slice,and(iv)finally determining whether there are defects in the averaged image of solder balls.The proposed hybrid algorithm is robust for segmenting the defects inside occluded solder balls,and improves the performance of solder ball segmentation and defect detection algorithm.Experimental results show an accuracy of more than 97%.展开更多
Objective:To investigate the feasibility of ultrasonic diagnosis for monitoring fracture healing. Methods:Thirty rabbit models with fraction of mandible body were established by surgically removing partial lower jawbo...Objective:To investigate the feasibility of ultrasonic diagnosis for monitoring fracture healing. Methods:Thirty rabbit models with fraction of mandible body were established by surgically removing partial lower jawbone.At the 1st,2nd,4th,6th,8th and 12th week after the operation, they were examined by X-ray and ultrasound,respectively.All detection results were scored according to a generally accepted standard.Spearman rank correlation analysis was conducted to explore the relationship between the results of the two inspection methods.Results:In each healing stage,the results of the ultrasonic inspection were basically consistent with those of the X-ray examination,as supported by a Spearman rank correlation coefficient of 0.892(P【0.001). Conclusions:Non-invasive ultrasonic inspection can be used instead of X-ray examination to monitor and diagnose fracture healing.展开更多
Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In ...Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carded out to evaluate the performance of XCPolR.展开更多
An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together fo...An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection.展开更多
The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated fro...The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated from power devices,were gauged for fundamental analysis.It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation,as indicated by the Hall and circular transmission line model.Specifically,under a 100-Mrad(Si)x-ray dose,the specific contact resistance pc of P-GaN decreased by 30%,and the hole carrier concentration increased significantly.Additionally,the atom displacement damage effect of a 2-MeV proton of 1×10^(13)p/cm^(2)led to a significant degradation of the electrical properties of P-GaN,while those of N-GaN remained unchanged.P-GaN was found to be more sensitive to irradiation than N-GaN thin film.The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.展开更多
BACKGROUND Conventional plain X-ray images of rats,the most common animals used as degeneration models,exhibit unclear vertebral structure and blurry intervertebral disc spaces due to their small size,slender vertebra...BACKGROUND Conventional plain X-ray images of rats,the most common animals used as degeneration models,exhibit unclear vertebral structure and blurry intervertebral disc spaces due to their small size,slender vertebral bodies.AIM To apply molybdenum target X-ray photography in the evaluation of caudal intervertebral disc(IVD)degeneration in rat models.METHODS Two types of rat caudal IVD degeneration models(needle-punctured model and endplate-destructed model)were established,and their effectiveness was verified using nuclear magnetic resonance imaging.Molybdenum target inspection and routine plain X-ray were then performed on these models.Additionally,four observers were assigned to measure the intervertebral height of degenerated segments on molybdenum target plain X-ray images and routine plain X-ray images,respectively.The degeneration was evaluated and statistical analysis was subsequently conducted.RESULTS Nine rats in the needle-punctured model and 10 rats in the endplate-destructed model were effective.Compared with routine plain X-ray images,molybdenum target plain X-ray images showed higher clarity,stronger contrast,as well as clearer and more accurate structural development.The McNemar test confirmed that the difference was statistically significant(P=0.031).In the two models,the reliability of the intervertebral height measured by the four observers on routine plain X-ray images was poor(ICC<0.4),while the data obtained from the molybdenum target plain X-ray images were more reliable.CONCLUSIONMolybdenum target inspection can obtain clearer images and display fine calcification in the imaging evaluation of caudal IVD degeneration in rats,thus ensuring a more accurate evaluation of degeneration.展开更多
Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Wi...Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application.展开更多
A low noise multi-channel readout integrated circuit (IC) which converts a detector current to analog voltage for X-ray cargo inspection is described. The readout IC provides 32 channels of a circuit having a maxi- ...A low noise multi-channel readout integrated circuit (IC) which converts a detector current to analog voltage for X-ray cargo inspection is described. The readout IC provides 32 channels of a circuit having a maxi- mum dynamic range of 15 bit and is comprised of integrator gain selection, timing generator, shift register chain, integrator array, sample/hold (S/H) stage amplifier etc. and occupies a die area of 2.7 × 13.9 mm2. It operates at It was fabricated using 0.6 μm standard CMOS process, 1 MHz, consumes 100 mW from a 5 V supply and 4.096 V as reference, and has a measured output noise of 85 μVms on 63 pF of integrator gain capacitance and 440 pF of photodiode terminal capacitance so that steel plate penetration thickness can reach more than 400 mm.展开更多
文摘Automated X-ray defect inspection of occluded objects has been an essential topic in semiconductors,autonomous vehicles,and artificial intelligence devices.However,there are few solutions to segment occluded objects in the X-ray inspection efficiently.In particular,in the Ball Grid Array inspection of X-ray images,it is difficult to accurately segment the regions of occluded solder balls and detect defects inside solder balls.In this paper,we present a novel automatic inspection algorithm that segments solder balls,and detects defects fast and efficiently when solder balls are occluded.The proposed algorithm consists of two stages.In the first stage,the defective candidates or defects are determined through the following four steps:(i)image preprocessing such as noise removal,contrast enhancement,binarization,connected component,and morphology,(ii)limiting the inspec-tion area to the ball regions and determining if the ball regions are occluded,(iii)segmenting each ball region into one or more regions with similar gray values,and(iv)determining whether there are defects or defective candidates in the regions using a weighted sum of local threshold on local variance.If there are defective candidates,the determination of defects is finally made in the following stage.In the second stage,defects are detected using the automated inspection technique based on oblique computed tomography.The 3D precision inspection process is divided into four steps:(i)obtaining 360 projection images(one image per degree)rotating the object from 0 to 360 degrees,(ii)reconstructing a 3D image from the 360 projected images,(iii)finding the center slice of gravity for solder balls from the axial slice images in the z-direction,and getting the inspection intervals between the upper bound and the lower bound from the center slice,and(iv)finally determining whether there are defects in the averaged image of solder balls.The proposed hybrid algorithm is robust for segmenting the defects inside occluded solder balls,and improves the performance of solder ball segmentation and defect detection algorithm.Experimental results show an accuracy of more than 97%.
基金Supported by the Research and Development Project of Scientific and Technological Industry of Guangdong Province(2011B080701053)
文摘Objective:To investigate the feasibility of ultrasonic diagnosis for monitoring fracture healing. Methods:Thirty rabbit models with fraction of mandible body were established by surgically removing partial lower jawbone.At the 1st,2nd,4th,6th,8th and 12th week after the operation, they were examined by X-ray and ultrasound,respectively.All detection results were scored according to a generally accepted standard.Spearman rank correlation analysis was conducted to explore the relationship between the results of the two inspection methods.Results:In each healing stage,the results of the ultrasonic inspection were basically consistent with those of the X-ray examination,as supported by a Spearman rank correlation coefficient of 0.892(P【0.001). Conclusions:Non-invasive ultrasonic inspection can be used instead of X-ray examination to monitor and diagnose fracture healing.
基金supported by the National Natural Science Foundation of China(Grant Nos.61172138 and 61401340)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2013JQ8040)+4 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130203120004)the Open Research Fund of the Academy of Satellite Application,China(Grant No.2014 CXJJ-DH 12)the Xi’an Science and Technology Plan,China(Grant No.CXY1350(4))the Fundamental Research Funds for the Central Universities,China(Grant Nos.201413B,201412B,and JB141303)the Open Fund of Key Laboratory of Precision Navigation and Timing Technology,National Time Service Center,Chinese Academy of Sciences(Grant Nos.2014PNTT01,2014PNTT07,and 2014PNTT08)
文摘Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carded out to evaluate the performance of XCPolR.
基金Project(2013CB035504) supported by the National Basic Research Program of ChinaProject(2012zzts078) supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2009ZX02038) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection.
文摘The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study.The electrical properties of both P-GaN and N-GaN,separated from power devices,were gauged for fundamental analysis.It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation,as indicated by the Hall and circular transmission line model.Specifically,under a 100-Mrad(Si)x-ray dose,the specific contact resistance pc of P-GaN decreased by 30%,and the hole carrier concentration increased significantly.Additionally,the atom displacement damage effect of a 2-MeV proton of 1×10^(13)p/cm^(2)led to a significant degradation of the electrical properties of P-GaN,while those of N-GaN remained unchanged.P-GaN was found to be more sensitive to irradiation than N-GaN thin film.The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.
基金Supported by the National Key Research and Development Program of China,No.2017YFA0105404。
文摘BACKGROUND Conventional plain X-ray images of rats,the most common animals used as degeneration models,exhibit unclear vertebral structure and blurry intervertebral disc spaces due to their small size,slender vertebral bodies.AIM To apply molybdenum target X-ray photography in the evaluation of caudal intervertebral disc(IVD)degeneration in rat models.METHODS Two types of rat caudal IVD degeneration models(needle-punctured model and endplate-destructed model)were established,and their effectiveness was verified using nuclear magnetic resonance imaging.Molybdenum target inspection and routine plain X-ray were then performed on these models.Additionally,four observers were assigned to measure the intervertebral height of degenerated segments on molybdenum target plain X-ray images and routine plain X-ray images,respectively.The degeneration was evaluated and statistical analysis was subsequently conducted.RESULTS Nine rats in the needle-punctured model and 10 rats in the endplate-destructed model were effective.Compared with routine plain X-ray images,molybdenum target plain X-ray images showed higher clarity,stronger contrast,as well as clearer and more accurate structural development.The McNemar test confirmed that the difference was statistically significant(P=0.031).In the two models,the reliability of the intervertebral height measured by the four observers on routine plain X-ray images was poor(ICC<0.4),while the data obtained from the molybdenum target plain X-ray images were more reliable.CONCLUSIONMolybdenum target inspection can obtain clearer images and display fine calcification in the imaging evaluation of caudal IVD degeneration in rats,thus ensuring a more accurate evaluation of degeneration.
基金support of the Poznan Networking&Supercomputing Center(PCSS)calculation grant
文摘Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application.
基金Project supported by the Beijing DT Electronic Technology Co.,Ltd.the National Natural Science Foundation of China(No.60976028)
文摘A low noise multi-channel readout integrated circuit (IC) which converts a detector current to analog voltage for X-ray cargo inspection is described. The readout IC provides 32 channels of a circuit having a maxi- mum dynamic range of 15 bit and is comprised of integrator gain selection, timing generator, shift register chain, integrator array, sample/hold (S/H) stage amplifier etc. and occupies a die area of 2.7 × 13.9 mm2. It operates at It was fabricated using 0.6 μm standard CMOS process, 1 MHz, consumes 100 mW from a 5 V supply and 4.096 V as reference, and has a measured output noise of 85 μVms on 63 pF of integrator gain capacitance and 440 pF of photodiode terminal capacitance so that steel plate penetration thickness can reach more than 400 mm.