The main objective of the present study is to characterize cap rock formation used for geological storage of carbon dioxide (CO2). The petrophysical properties of several rocks were studied before CO2 injection. This ...The main objective of the present study is to characterize cap rock formation used for geological storage of carbon dioxide (CO2). The petrophysical properties of several rocks were studied before CO2 injection. This step is necessary for an understanding of CO2-brine-rock interactions. The mineralogical composition of several clay samples collected from real storage sites located in the south of Tunisia was determined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) coupled to a probe EDS, infrared spectroscopy, thermal analysis and fluorescence spectra. The obtained experimental results reveal that illite, calcite and quartz are the dominant clay minerals. Dolomite and albite are also present. Besides, SEM analysis shows laminated structure for these samples which suggests low crystallinity. This sample contains a higher content of Fe, Cl, Ca and O. The clay cover may also be useful in storage process by immobilizing the migration of CO2 outer of the geological site and activating the process of mineral sequestration.展开更多
文摘The main objective of the present study is to characterize cap rock formation used for geological storage of carbon dioxide (CO2). The petrophysical properties of several rocks were studied before CO2 injection. This step is necessary for an understanding of CO2-brine-rock interactions. The mineralogical composition of several clay samples collected from real storage sites located in the south of Tunisia was determined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) coupled to a probe EDS, infrared spectroscopy, thermal analysis and fluorescence spectra. The obtained experimental results reveal that illite, calcite and quartz are the dominant clay minerals. Dolomite and albite are also present. Besides, SEM analysis shows laminated structure for these samples which suggests low crystallinity. This sample contains a higher content of Fe, Cl, Ca and O. The clay cover may also be useful in storage process by immobilizing the migration of CO2 outer of the geological site and activating the process of mineral sequestration.