To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantit...To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.展开更多
The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectr...The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.展开更多
BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent ye...BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent years,energy spectrum computed tomography(CT)multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.AIM To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion(LVI)and nerve invasion(PNI)in GC patients.METHODS Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023,including 46 males and 16 females aged 36-71(57.5±9.1)years,were retrospectively collected.The patients were divided into a positive group(42 patients)and a negative group(20 patients)according to the presence of LVI/PNI.The CT values(CT40 keV,CT70 keV),iodine concentration(IC),and normalized IC(NIC)of lesions in the upper energy spectrum CT images of the arterial phase,venous phase,and delayed phase 40 and 70 keV were measured,and the slopes of the energy spectrum curves[K(40-70)]from 40 to 70 keV were calculated.Arterial Core Tip:To investigate the application value of multiparameter energy spectrum computed tomography(CT)imaging in the preoperative assessment of vascular and nerve infiltration in patients with gastric cancer(GC).The imaging data of GC patients were retrospectively analyzed to evaluate the accuracy and sensitivity of CT for identifying and quantifying vascular and nerve infiltration and for comparison with postoperative pathological results.The purpose of this study was to verify the clinical feasibility and potential advantages of multiparameter energy spectrum CT imaging in guiding preoperative diagnosis and treatment decision-making and to provide a new imaging basis for improving the diagnostic accuracy and prognosis of GC patients.展开更多
Eight water bottles from Ebrie lagoon with pollution potency were studied using nuclear chemistry technique and Energy dispersive X-ray fluorescence. This pollution is characterized by pH and conductivity parameters, ...Eight water bottles from Ebrie lagoon with pollution potency were studied using nuclear chemistry technique and Energy dispersive X-ray fluorescence. This pollution is characterized by pH and conductivity parameters, concentrations average in mg/L of metals such Fe (0.731), Mn (0.345), Cr (0.070), Cu (0.014) and concentrations of nutrients known to be pollutants and toxic for living or-ganisms. These heavy metals are dangerous to the lives, the local inhabitants and also a threat to aquatic life since this water is essential for the economical town, Abidjan. According to the Manganese concentration average (0.345 mg) values that higher than WHO (0.05 mg) value, the main likely source of pollu-tants is anthropogenic, industrial and agricultural. This study also shows the use of materials and lubricants near the lagoon that pollute this water.展开更多
BACKGROUND: Alpha-actinin ( a -actinin) plays a key role in neuronal growth cone migration during directional differentiation from neural stem cells (NSCs) to neurons. OBJECTIVE: To detect in situ microdistribut...BACKGROUND: Alpha-actinin ( a -actinin) plays a key role in neuronal growth cone migration during directional differentiation from neural stem cells (NSCs) to neurons. OBJECTIVE: To detect in situ microdistribution and quantitative expression of a -actinin during directional differentiation of NSCs to neurons in the temporal lobe cerebral cortex of neonatal rats. DESIGN, TIME AND SETTING: Between January 2006 and December 2008, culture and directional differentiation of NSCs were performed at Department of Histology and Embryology, Preclinical Medical College, China Medical University. Immune electron microscopy was performed at Department of Histology and Embryology and Department of Electron Micrology, Preclinical Medical College, China Medical University. Spectrum analysis was performed at Laboratory of Electron Microscopy, Mental Research Institute, Chinese Academy of Sciences. MATERIALS: Basic fibroblast growth factor, epidermal growth factor, brain-derived nerve growth factor, type-1 insulin like growth factor, and a -actinin antibody were provided by Gibco BRL, USA; rabbit-anti-rat nestin monoclonal antibody, rabbit-anti-rat neuron specific enolase polyclonal antibody, and EDAX-9100 energy dispersive X-ray analysis were provided by PHILIPS Company, Netherlands. METHODS: NSCs, following primary and passage culture, were differentiated with serum culture medium (DMEM/F12 + 10% fetal bovine serum + 2 ng/mL brain-derived nerve growth factor + 2 ng/mL type-1 insulin like growth factor). MAIN OUTCOME MEASURES: Expression of a -actinin in neuron-like cells was quantitatively and qualitatively detected with immunocytochemistry using energy dispersive X-ray analysis. RESULTS: Immunocytochemistry, combined with electron microscopy, indicated that positive α -actinin expression was like a spheroid particle with high electron density. In addition, the expression was gradually concentrated from the nuclear edge to the cytoplasm and expanded into developing neurites, during differentiation of neural stem cells to neurons. Conversely, energy dispersive X-ray analysis indicated that the more mature the neural differentiation was, and the greater the expression of α -actinin. CONCLUSION: The gradual increase of α -actinin expression is related to growth, development, and maturity of differentiated neuron-like cells, in neonatal rat frontal lobe cortex, at different differentiating time points of NSCs to neurons.展开更多
The Energy Dispersive X-ray Diffraction, generally referred as EDXD, has shown to be a valid alternative to the conventional Angular Dispersive X-ray Diffraction, the ADXD. EDXD exhibits several advantages to its AD c...The Energy Dispersive X-ray Diffraction, generally referred as EDXD, has shown to be a valid alternative to the conventional Angular Dispersive X-ray Diffraction, the ADXD. EDXD exhibits several advantages to its AD counterpart, mainly related to the properties of the polychromatic X-ray beam utilized for diffracting, such as higher signal intensities, a wider accessible region of the reciprocal space, a greater transparency of samples, and a parallel data collection of the q-points in the diffraction pattern acquisition. However, the main drawback of poly-chromaticity lays in the fact that the quantities that modulate the scattered intensity in a diffraction measurement depend on the energy. These quantities are the primary X-ray beam spectrum, polarization, and X-ray absorption, the last producing by far the most critical effect because it rapidly changes as a function of energy. Therefore, a detailed knowledge of the energy dependence of all these quantities is required in EDXD in order to process the data correctly and prevent systematic errors. The difficulty in handling the energy-dependent factors complicates the experimental procedure and may make the measurements unreliable. In the present paper, a hybrid method between the ED and AD X-ray Diffraction is proposed to maintain the advantages of the polychromatic nature of the radiation utilized in EDXD, while preventing the problems produced by the energy-dependent quantities.展开更多
This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscop...This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscopy (EDS) technique is used for the detection of major elements and the effects of shifting depositional climatic conditions of six representative samples which were acquired from the Sohnari Member of the Laki Formation at Lakhra area, Sindh, Pakistan. The sedimentological studies clarify that the sediments the Sonahri Member are relatively immature and most migrated in clastic mode. The availability of Silica shows that the Member was formed due to biochemical precipitation and detrital mode and was deposited at a fast rate of sediment deposition under the fluvio-deltaic depositional system. This is also deduced that the rapid rate of sediment deposition might be created a reducing atmosphere and allowing for the mineralization of sulphur.展开更多
A kind of excellent CdZnTe crystal has been grown in Yinnel Tech, Inc. in recent years. Based on these CdZnTe crystals and some new techniques, a portable energy-dispersive spectrometer has been constructed which has ...A kind of excellent CdZnTe crystal has been grown in Yinnel Tech, Inc. in recent years. Based on these CdZnTe crystals and some new techniques, a portable energy-dispersive spectrometer has been constructed which has yielded good results. CdZnTe detector has a 3% relative resolution in high-energy field and can detect gamma rays at room temperature. An integrated circuit based on preamplifier and shaping amplifier chips is connected to the detector. Voltage pulses are transformed into digital signals in MCA (multichannel analyzer) and are then transmitted to com- puter via USB bus. Data process algorithms are improved in this spectrometer. Fast Fourier transform (FFT) and nu- merical differentiation (ND) are used in energy peak’s searching program. Sampling-based correction technique is used in X-ray energy calibration. Modified Gaussian-Newton algorithm is a classical method to solve nonlinear curve fitting problems, and it is used to compute absolute intensity of each detected characteristic line.展开更多
This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray ...This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.展开更多
Because the interactions between molecules and atoms in mediums can be dramatically changed by compression, high pressure studies on materials can provide much information on fundamental properties including phase tra...Because the interactions between molecules and atoms in mediums can be dramatically changed by compression, high pressure studies on materials can provide much information on fundamental properties including phase transition and展开更多
The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting com...The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.展开更多
Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two as...Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two aspects,which are very important from both theorctical and engineering application points of view, have not yet been properly handled. One is that the elementary analyses or the experimental measurement on the mass attenuation coefficients were notspecified in regard to spectnun energv distridutions [1]. In this connection, the ambiguities in the specification of the coeffiecients and in turn for thc results among studies arise when only one of the two parameters, namely wave length and applied voltage, of detining the energy spectrum of X-ray is given. The oher is that the relationships between the relative intensity and the sample thickness as well the wood moisture content [2], which are the critical factors for the design and theselection of X-ray apparatus, were not sufficiently examined. In addition, the knowledge of the measurelnent of woodmiosture content by using the direct X-ray scanning method is also almost unavaible now. In the study, the direct X-rayscanning method of measuring wood moisture content was at first investigated theoretically with respect to the relationshipbetween the mass attenuation coefficients of wood (beech, Fagus Sylvatica) and the maximum spectrum energy of X-ray.Secondly, the dependence of the relative intensity on the sample thickness and on the wood moisture content was analysed.The main advantage of the method is on-site nondestructive measuring of wood moisture content in the processes such asdrying, impregnation and unsteady mass diffusion. Specifically for the application in the area of biomechanics, the methodcan also bc used for understanding the water pathway within wood, for example, the water around the knots and the relation between the stress distribution and the local moisture content of wood.展开更多
Natural magnetic black sands are known from several sites often located in areas of volcanic origin. Their elemental and mineral composition provides information on the geology of their territory and depends on severa...Natural magnetic black sands are known from several sites often located in areas of volcanic origin. Their elemental and mineral composition provides information on the geology of their territory and depends on several factors occurred during their formation. A sample of black sand was collected on the seashore of the island of Mayotte in the Indian Ocean and its magnetic part was investigated by means of energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), and MÖssbauer spectroscopy at room temperature. The mineral composition is dominantly magnetite, in good agreement with samples collected in other sites of volcanic origin. Contrary to pure magnetite, a relevant fraction of Ti was detected by EDS. The 16% Ti and 1% Mn content increase the magnetite lattice parameter to 8.4312 (25) Å. The broadening of XRD lines pointed towards a significant degree of disorder. This was confirmed by MÖssbauer spectroscopy and is attributed to the presence of Ti replacing Fe in the magnetite lattice. The presence of Ti modifies the local magnetic field on the Fe sites, leading to a broader and more complex MÖssbauer transmission spectrum with respect to the one of pure magnetite. To study the effect of temperature, samples were heated for 12 hours to 600°C and 800°C in argon and to 1000°C in air. Annealing in argon did not improve the crystallinity while annealing in air caused a complete decomposition of magnetite into hematite and pseudobrookite.展开更多
The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on t...The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mossbauer spectrum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.展开更多
The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the...The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.展开更多
基金Funded by the International Science&Technology Cooperation Program of Hubei Province of China(No.2022EHB024)。
文摘To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.
基金supported by the National Key R&D Project of China(No.2017YFC0602100)the National Natural Science Foundation of China(No.41774147)Sichuan Science and Technology Support Program(No.2015GZ0272)
文摘The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.
文摘BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent years,energy spectrum computed tomography(CT)multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.AIM To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion(LVI)and nerve invasion(PNI)in GC patients.METHODS Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023,including 46 males and 16 females aged 36-71(57.5±9.1)years,were retrospectively collected.The patients were divided into a positive group(42 patients)and a negative group(20 patients)according to the presence of LVI/PNI.The CT values(CT40 keV,CT70 keV),iodine concentration(IC),and normalized IC(NIC)of lesions in the upper energy spectrum CT images of the arterial phase,venous phase,and delayed phase 40 and 70 keV were measured,and the slopes of the energy spectrum curves[K(40-70)]from 40 to 70 keV were calculated.Arterial Core Tip:To investigate the application value of multiparameter energy spectrum computed tomography(CT)imaging in the preoperative assessment of vascular and nerve infiltration in patients with gastric cancer(GC).The imaging data of GC patients were retrospectively analyzed to evaluate the accuracy and sensitivity of CT for identifying and quantifying vascular and nerve infiltration and for comparison with postoperative pathological results.The purpose of this study was to verify the clinical feasibility and potential advantages of multiparameter energy spectrum CT imaging in guiding preoperative diagnosis and treatment decision-making and to provide a new imaging basis for improving the diagnostic accuracy and prognosis of GC patients.
文摘Eight water bottles from Ebrie lagoon with pollution potency were studied using nuclear chemistry technique and Energy dispersive X-ray fluorescence. This pollution is characterized by pH and conductivity parameters, concentrations average in mg/L of metals such Fe (0.731), Mn (0.345), Cr (0.070), Cu (0.014) and concentrations of nutrients known to be pollutants and toxic for living or-ganisms. These heavy metals are dangerous to the lives, the local inhabitants and also a threat to aquatic life since this water is essential for the economical town, Abidjan. According to the Manganese concentration average (0.345 mg) values that higher than WHO (0.05 mg) value, the main likely source of pollu-tants is anthropogenic, industrial and agricultural. This study also shows the use of materials and lubricants near the lagoon that pollute this water.
基金Supported by:the National Natural Science Foundation of China,No.39970383the Project for Science and Technology from Educational Committee of Liaoning Province,No.202013132Technological Program for Colleges and Universities of Liaoning Educational Committee,No.[2008]84
文摘BACKGROUND: Alpha-actinin ( a -actinin) plays a key role in neuronal growth cone migration during directional differentiation from neural stem cells (NSCs) to neurons. OBJECTIVE: To detect in situ microdistribution and quantitative expression of a -actinin during directional differentiation of NSCs to neurons in the temporal lobe cerebral cortex of neonatal rats. DESIGN, TIME AND SETTING: Between January 2006 and December 2008, culture and directional differentiation of NSCs were performed at Department of Histology and Embryology, Preclinical Medical College, China Medical University. Immune electron microscopy was performed at Department of Histology and Embryology and Department of Electron Micrology, Preclinical Medical College, China Medical University. Spectrum analysis was performed at Laboratory of Electron Microscopy, Mental Research Institute, Chinese Academy of Sciences. MATERIALS: Basic fibroblast growth factor, epidermal growth factor, brain-derived nerve growth factor, type-1 insulin like growth factor, and a -actinin antibody were provided by Gibco BRL, USA; rabbit-anti-rat nestin monoclonal antibody, rabbit-anti-rat neuron specific enolase polyclonal antibody, and EDAX-9100 energy dispersive X-ray analysis were provided by PHILIPS Company, Netherlands. METHODS: NSCs, following primary and passage culture, were differentiated with serum culture medium (DMEM/F12 + 10% fetal bovine serum + 2 ng/mL brain-derived nerve growth factor + 2 ng/mL type-1 insulin like growth factor). MAIN OUTCOME MEASURES: Expression of a -actinin in neuron-like cells was quantitatively and qualitatively detected with immunocytochemistry using energy dispersive X-ray analysis. RESULTS: Immunocytochemistry, combined with electron microscopy, indicated that positive α -actinin expression was like a spheroid particle with high electron density. In addition, the expression was gradually concentrated from the nuclear edge to the cytoplasm and expanded into developing neurites, during differentiation of neural stem cells to neurons. Conversely, energy dispersive X-ray analysis indicated that the more mature the neural differentiation was, and the greater the expression of α -actinin. CONCLUSION: The gradual increase of α -actinin expression is related to growth, development, and maturity of differentiated neuron-like cells, in neonatal rat frontal lobe cortex, at different differentiating time points of NSCs to neurons.
文摘The Energy Dispersive X-ray Diffraction, generally referred as EDXD, has shown to be a valid alternative to the conventional Angular Dispersive X-ray Diffraction, the ADXD. EDXD exhibits several advantages to its AD counterpart, mainly related to the properties of the polychromatic X-ray beam utilized for diffracting, such as higher signal intensities, a wider accessible region of the reciprocal space, a greater transparency of samples, and a parallel data collection of the q-points in the diffraction pattern acquisition. However, the main drawback of poly-chromaticity lays in the fact that the quantities that modulate the scattered intensity in a diffraction measurement depend on the energy. These quantities are the primary X-ray beam spectrum, polarization, and X-ray absorption, the last producing by far the most critical effect because it rapidly changes as a function of energy. Therefore, a detailed knowledge of the energy dependence of all these quantities is required in EDXD in order to process the data correctly and prevent systematic errors. The difficulty in handling the energy-dependent factors complicates the experimental procedure and may make the measurements unreliable. In the present paper, a hybrid method between the ED and AD X-ray Diffraction is proposed to maintain the advantages of the polychromatic nature of the radiation utilized in EDXD, while preventing the problems produced by the energy-dependent quantities.
文摘This study determines the geochemical and depositional environment analysis of the sediments of the Sohnari Member of the Laki Formation, Northern Kirthar Fold Belt of Pakistan. The Energy-Dispersive-X-Ray Spectroscopy (EDS) technique is used for the detection of major elements and the effects of shifting depositional climatic conditions of six representative samples which were acquired from the Sohnari Member of the Laki Formation at Lakhra area, Sindh, Pakistan. The sedimentological studies clarify that the sediments the Sonahri Member are relatively immature and most migrated in clastic mode. The availability of Silica shows that the Member was formed due to biochemical precipitation and detrital mode and was deposited at a fast rate of sediment deposition under the fluvio-deltaic depositional system. This is also deduced that the rapid rate of sediment deposition might be created a reducing atmosphere and allowing for the mineralization of sulphur.
文摘A kind of excellent CdZnTe crystal has been grown in Yinnel Tech, Inc. in recent years. Based on these CdZnTe crystals and some new techniques, a portable energy-dispersive spectrometer has been constructed which has yielded good results. CdZnTe detector has a 3% relative resolution in high-energy field and can detect gamma rays at room temperature. An integrated circuit based on preamplifier and shaping amplifier chips is connected to the detector. Voltage pulses are transformed into digital signals in MCA (multichannel analyzer) and are then transmitted to com- puter via USB bus. Data process algorithms are improved in this spectrometer. Fast Fourier transform (FFT) and nu- merical differentiation (ND) are used in energy peak’s searching program. Sampling-based correction technique is used in X-ray energy calibration. Modified Gaussian-Newton algorithm is a classical method to solve nonlinear curve fitting problems, and it is used to compute absolute intensity of each detected characteristic line.
基金Project supported by the National Natural Science Foundation of China (Grant No.10576006)the Foundation of China Academy of Engineering Physics (Grant Nos.2007A01001 and 2009B0202020)
文摘This paper reports on the results of calculations using a Monte Carlo code (MCNP5) to study the properties of photons, electrons and photoneutrons obtained in the converted target and their transportations in x-ray radiography. A comparison between measurements and calculations for bremsstrahlung and photoneutrons is presented. The radiographic rule and the effect of the collimator on the image are studied with the experimental model. The results provide exact parameters for the optimal design of radiographic layout and shielding systems.
文摘Because the interactions between molecules and atoms in mediums can be dramatically changed by compression, high pressure studies on materials can provide much information on fundamental properties including phase transition and
基金Project supported by the National Natural Science Foundation of China (Grant No 10675014)
文摘The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.
文摘Although quite a numer of papers can be found up to now dealing with the subject of the measurement ofwood density by using the X-ray exposure methods, direet scanning or radiographic photography, the following two aspects,which are very important from both theorctical and engineering application points of view, have not yet been properly handled. One is that the elementary analyses or the experimental measurement on the mass attenuation coefficients were notspecified in regard to spectnun energv distridutions [1]. In this connection, the ambiguities in the specification of the coeffiecients and in turn for thc results among studies arise when only one of the two parameters, namely wave length and applied voltage, of detining the energy spectrum of X-ray is given. The oher is that the relationships between the relative intensity and the sample thickness as well the wood moisture content [2], which are the critical factors for the design and theselection of X-ray apparatus, were not sufficiently examined. In addition, the knowledge of the measurelnent of woodmiosture content by using the direct X-ray scanning method is also almost unavaible now. In the study, the direct X-rayscanning method of measuring wood moisture content was at first investigated theoretically with respect to the relationshipbetween the mass attenuation coefficients of wood (beech, Fagus Sylvatica) and the maximum spectrum energy of X-ray.Secondly, the dependence of the relative intensity on the sample thickness and on the wood moisture content was analysed.The main advantage of the method is on-site nondestructive measuring of wood moisture content in the processes such asdrying, impregnation and unsteady mass diffusion. Specifically for the application in the area of biomechanics, the methodcan also bc used for understanding the water pathway within wood, for example, the water around the knots and the relation between the stress distribution and the local moisture content of wood.
文摘Natural magnetic black sands are known from several sites often located in areas of volcanic origin. Their elemental and mineral composition provides information on the geology of their territory and depends on several factors occurred during their formation. A sample of black sand was collected on the seashore of the island of Mayotte in the Indian Ocean and its magnetic part was investigated by means of energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), and MÖssbauer spectroscopy at room temperature. The mineral composition is dominantly magnetite, in good agreement with samples collected in other sites of volcanic origin. Contrary to pure magnetite, a relevant fraction of Ti was detected by EDS. The 16% Ti and 1% Mn content increase the magnetite lattice parameter to 8.4312 (25) Å. The broadening of XRD lines pointed towards a significant degree of disorder. This was confirmed by MÖssbauer spectroscopy and is attributed to the presence of Ti replacing Fe in the magnetite lattice. The presence of Ti modifies the local magnetic field on the Fe sites, leading to a broader and more complex MÖssbauer transmission spectrum with respect to the one of pure magnetite. To study the effect of temperature, samples were heated for 12 hours to 600°C and 800°C in argon and to 1000°C in air. Annealing in argon did not improve the crystallinity while annealing in air caused a complete decomposition of magnetite into hematite and pseudobrookite.
文摘The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mossbauer spectrum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.
文摘The study of the mineral and organic content of the Allende meteorite is important for our understanding of the molecular evolution of the universe as well as the ancient Earth. Previous studies have characterized the magnetic minerals present in ordinary and carbonaceous chondrites, providing information on the evolution of magnetic fields. The interaction of organic compounds with magnetic minerals is a possible source of chemical diversity, which is crucial for molecular evolution. Carbon compounds in meteorites are of great scientific interest for a variety of reasons, such as their relevance to the origins of chirality in living organisms. This study presents the characterization of organic and mineral compounds in the Allende meteorite. The structural and physicochemical characterization of the Allende meteorite was accomplished through light microscopy, powder X-ray diffraction with complementary Rietveld refinement, Raman and infrared spectroscopy, mass spectrometry, scanning electron microscopy, and atomic force microscopy using magnetic signal methods to determine the complex structure and the interaction of organic compounds with magnetic Ni-Fe minerals. The presence of Liesegang-like patterns of chondrules in fragments of the Allende structure may also be relevant to understanding how the meteorite was formed. Other observations include the presence of magnetic materials and nanorod-like solids with relatively similar sizes as well as the heterogeneous distribution of carbon in chondrules. Signals observed in the Raman and infrared spectra resemble organic compounds such as carbon nanotubes and peptide-like molecules that have been previously reported in other meteorites, making the Mexican Allende meteorite a feasible sample for the study of the early Earth and exoplanetary bodies.