Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low che...Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low chemical yield hinders their upscale production for practical use.Meanwhile,the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals.Herein,we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent,saving over 95% of the solvent for the unity mass nanocrystal production.The perovskite colloid exhibits record stability upon long-term storage for up to 8 months,preserving a photoluminescence quantum yield of 63% in solid state.Importantly,the colloidal nanosheets show self-assembly behavior upon slow solidification,generating a crack-free thin film in a large area.The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging.Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals,which may inspire the industrial optoelectronic application of large-area perovskite film.展开更多
Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,bu...Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications.展开更多
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo...The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.展开更多
Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions...Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age.展开更多
Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Metho...Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Methods:During the period from March 2023 to August 2023,312 patients who received gastroscopy in the Kunming Guandu District People’s Hospital were selected,and they underwent both conventional gastroscopy and endoscopic NBI,with clinicopathological tissue biopsy serving as the gold standard.The application value for early screening of gastric cancer was observed and analyzed.Results:The scoring data showed that the clarity of gastric mucosal glandular tube structure,microvascular structure clarity,and lesion contour scoring data of conventional gastroscopy were lower than those of the NBI technology(P<0.05).The screening rate of pathological biopsy in 312 patients was 18.59%(58 cases).Conventional gastroscopy showed a screening rate of 11.53%(36 cases),while NBI technology examined a screening rate of 17.63%(55 cases),and the two-by-two comparison of the screening rate data of the three groups was not statistically significant(P>0.05).The sensitivity,specificity,accuracy,positive predictive value,and negative predictive value of conventional gastroscopy appeared to be lower than those of NBI technology(P<0.05).Conclusion:In the early screening of gastric cancer,endoscopic NBI technology can be applied to patients.Compared with conventional gastroscopy,it provides a clearer visualization of the structure of the gastric mucosal glandular structure and microvascular structure,with a certain screening rate.Additionally,its sensitivity,specificity,accuracy,positive predictive value,and negative predictive value are higher,demonstrating outstanding effectiveness.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph...Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.展开更多
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.展开更多
This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include pictu...This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.展开更多
To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-...To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-structured detector ensures that this system can measure HXR-radiation spectra from the entire plasma cross section.Therefore,it is suitable for the study of fast-electron physics,such as radio-frequency wave current drives,fast electrons driving instabilities,and plasma disruptions in fusion research.In this study,we develop a simulation for calculating fast-electron bremsstrahlung in the HL-3 tokamak based on the Monte Carlo simulation code Geant4,in which the plasma geometry and forward scattering of fast-electron bremsstrahlung are considered.The preliminary calculation results indicate that the HXR energy deposi-tion on the detector is symmetrically distributed,even though the plasma distribution is asymmetric owing to the toroidal effect.These simulation results are helpful in constructing the relationship between the energy deposition on the detector and parameter distribution on the plasma cross section during HL-3 experiments.This is beneficial for the reconstruction of the fast-electron-distribution function and for optimizing the design of the HXR-imaging system.展开更多
In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offeri...In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.展开更多
This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was f...This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively.展开更多
Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colore...Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies.展开更多
Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information.Large-field high-resolution monochromatic imaging of a He-like iron(Fe XXV)Kαcharacteristic line(6.701 keV)for ...Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information.Large-field high-resolution monochromatic imaging of a He-like iron(Fe XXV)Kαcharacteristic line(6.701 keV)for laser plasma diagnostics was achieved using a developed toroidal crystal x-ray imager.A high-index crystal orientation Ge(531)wafer with a Bragg angle of 75.37°and the toroidal substrate were selected to obtain sufficient diffraction efficiency and compensate for astigmatism under oblique incidence.A precise offline assembly method of the toroidal crystal imager based on energy substitution was proposed,and a spatial resolution of 3-7μm was obtained by toroidal crystal imaging of a 600 line-pairs/inch Au grid within an object field of view larger than 1.0 mm.The toroidal crystal x-ray imager has been successfully tested via side-on backlight imaging experiments of the sinusoidal modulation target and a 1000 line-pairs/inch Au grid with a linewidth of 5μm using an online alignment method based on dual positioning balls to indicate the target and backlighter.This paper describes the optical design,adjustment method,and experimental results of a toroidal crystal system in a laboratory and laser facility.展开更多
BACKGROUND X-ray gastric cancer(GC)screening has been shown to decrease mortality.Population-based X-ray GC screening has been performed in Hiroshima Prefe-cture,Japan,since 1983 but time trends and the efficacy of th...BACKGROUND X-ray gastric cancer(GC)screening has been shown to decrease mortality.Population-based X-ray GC screening has been performed in Hiroshima Prefe-cture,Japan,since 1983 but time trends and the efficacy of the method over 39 years have not been assessed.METHODS This was a population-based retrospective study.The data were derived from aggregated data of the Hiroshima Regional Health Medical Promotion Organization,including the number and rate of participants and those requiring esophagogastroduodenoscopies(EGDs),the number and rate of participants diagnosed as having GC,and the positive predictive value of the abnormal findings detected by X-ray and confirmed by EGDs.The number and rate of esophageal cancers were also collected.Further,the cost of detecting one GC was evaluated.RESULTS The number of participants has decreased during the last four decades,from 39925 in 1983 to 12923 in 2021.The rate of those requiring EGDs decreased significantly in recent years(P<0.001).The number of participants diagnosed as having GC has also declined,from 76 to 10 cases.However,the rate of cases diagnosed as GC among the participants remained around 0.1%.The positive predictive value increased significantly in recent years except during 1983-1991.The number and rate of accidentally detected esophageal cancers have risen recently,from 0%in 2008 to 0.02%in 2021,one-fifth of the diagnosis rate of GC.One GC diagnosis costs approximately 4200000 Japanese Yen(30000 United States Dollars)for the X-ray screenings and EGDs.CONCLUSION X-ray GC screening in Hiroshima has been efficient,but one challenge is the cost.Esophageal cancers may also need to be considered because they have gradually increased in recent years.展开更多
BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,th...BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,the effects of preoperative planning and intraoperative guidance with computed tomography(CT)/magnetic resonance imaging(MRI)registration techniques on PELD for LSS and postoperative rehabilitation outcomes were evaluated.METHODS This retrospective study was conducted with data from patients who underwent PELD for LSS between January 2021 and December 2023.Patients were assigned to preoperative CT/MRI registration and control groups.Data collected included the operative time,length of hospital stay,visual analog scale(VAS)scores for low back and leg pain,and the Japanese Orthopaedic Association(JOA)lumbar spine score.Differences between groups were assessed using Student’s t test.RESULTS Data from 135 patients(71 in the CT/MRI registration group,64 in the control group)were analyzed.The operative time was significantly shorter in the CT/MRI registration group(P=0.007).At 2 months postoperatively,both groups showed significant reductions in VAS leg and low back pain scores(all P<0.001)and improvements in the JOA score(both P<0.001).No complication or death occurred.Preoperatively,pain and JOA scores were similar between groups(P=0.830,P=0.470,and P=0.287,respectively).At 2 months postoperatively,patients in the CT/MRI registration group reported lower leg and low back pain levels(P<0.001 and P=0.001,respectively)and had higher JOA scores(P=0.004)than did patients in the control group.CONCLUSION Preoperative CT/MRI registration for PELD for LSS reduced the operative time and VAS pain scores at 2 months and improved JOA scores,demonstrating enhanced effectiveness and safety.展开更多
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r...Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.展开更多
X-ray analyzer-based imaging(ABI) is a powerful phase-sensitive technique that can provide a wide dynamic range of density and extract useful physical properties of the sample. It derives contrast from x-ray absorptio...X-ray analyzer-based imaging(ABI) is a powerful phase-sensitive technique that can provide a wide dynamic range of density and extract useful physical properties of the sample. It derives contrast from x-ray absorption, refraction, and scattering properties of the investigated sample. However, x-ray ABI setups can be susceptible to external vibrations, and mechanical imprecisions of system components, e.g., the precision of motor, which are unavoidable in practical experiments. Those factors will provoke deviations of analyzer angular positions and hence errors in the acquired image data.Consequently, those errors will introduce artefacts in the retrieved refraction and scattering images. These artefacts are disadvantageous for further image interpretation and tomographic reconstruction. For this purpose, this work aims to analyze image artefacts resulting from deviations of analyzer angular positions. Analytical expressions of the refraction and scattering image artefacts are derived theoretically and validated by synchrotron radiation experiments. The results show that for the refraction image, the artefact is independent of the sample’s absorption and scattering signals. By contrast, artefact of the scattering image is dependent on both the sample’s refraction and scattering signals, but not on absorption signal.Furthermore, the effect of deviations of analyzer angular positions on the accuracy of the retrieved images is investigated,which can be of use for optimization of data acquisition. This work offers the possibility to develop advanced multi-contrast image retrieval algorithms that suppress artefacts in the retrieved refraction and scattering images in x-ray analyzer-based imaging.展开更多
X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from ...X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phasestepping data.The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position.However,stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition.Previous studies have shown that those influences introduce errors in the acquired phase-stepping data,which cause obvious moiréartifacts in the retrieved refraction image.This work investigates moiréartifacts in x-ray dark-field imaging as a result of flux fluctuations.For the retrieved mean intensity,amplitude,visibility and dark-field images,the dependence of moiréartifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion.Results of synchrotron radiation experiments verify the validity of the derived analytical formulas.The spatial frequency characteristics of moiréartifacts are analyzed and compared to those induced by phase-stepping errors.It illustrates that moiréartifacts can be estimated by a weighted mean of flux fluctuation factors,with the weighting factors dependent on the moiréphase and different greatly for each retrieved image.Furthermore,moiréartifacts can even be affected by object’s features not displayed in the particular contrast.These results can be used to interpret images correctly,identify sources of moiréartifacts,and develop dedicated algorithms to remove moiréartifacts in the retrieved multi-contrast images.展开更多
基金supported by National Natural Science Foundation of China (Nos. 21805111 and 11405073)Taishan Scholar Fund
文摘Wet chemistry methods,including hot-injection and precipitation methods,have emerged as major synthetic routes for high-quality perovskite nanocrystals in backlit display and scintillation applications.However,low chemical yield hinders their upscale production for practical use.Meanwhile,the labile nature of halide-based perovskite poses a major challenge for long-term storage of perovskite nanocrystals.Herein,we report a green synthesis at room temperature for gram-scale production of CsPbBr3 nanosheets with minimum use of solvent,saving over 95% of the solvent for the unity mass nanocrystal production.The perovskite colloid exhibits record stability upon long-term storage for up to 8 months,preserving a photoluminescence quantum yield of 63% in solid state.Importantly,the colloidal nanosheets show self-assembly behavior upon slow solidification,generating a crack-free thin film in a large area.The uniform film was then demonstrated as an efficient scintillation screen for X-ray imaging.Our findings bring a scalable tool for synthesis of high-quality perovskite nanocrystals,which may inspire the industrial optoelectronic application of large-area perovskite film.
基金financial support from the National Natural Science Foundation of China(Nos.22075284,51872287,and U2030118)the Youth Innovation Promotion Association CAS(No.2019304)+1 种基金the Fund of Mindu Innovation Laboratory(No.2021ZR201)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20210039)
文摘Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications.
基金financial support through a KekuléPh.D.fellowship by the Fonds der Chemischen Industrie(FCI)support from the China Scholarship Council(No.202106950013)。
文摘The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems.
文摘Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age.
文摘Objective:To explore the implementation of gastrointestinal endoscopy technology and endoscopic narrow-band imaging(NBI)in the early screening of gastric cancer and to observe and study their application effects.Methods:During the period from March 2023 to August 2023,312 patients who received gastroscopy in the Kunming Guandu District People’s Hospital were selected,and they underwent both conventional gastroscopy and endoscopic NBI,with clinicopathological tissue biopsy serving as the gold standard.The application value for early screening of gastric cancer was observed and analyzed.Results:The scoring data showed that the clarity of gastric mucosal glandular tube structure,microvascular structure clarity,and lesion contour scoring data of conventional gastroscopy were lower than those of the NBI technology(P<0.05).The screening rate of pathological biopsy in 312 patients was 18.59%(58 cases).Conventional gastroscopy showed a screening rate of 11.53%(36 cases),while NBI technology examined a screening rate of 17.63%(55 cases),and the two-by-two comparison of the screening rate data of the three groups was not statistically significant(P>0.05).The sensitivity,specificity,accuracy,positive predictive value,and negative predictive value of conventional gastroscopy appeared to be lower than those of NBI technology(P<0.05).Conclusion:In the early screening of gastric cancer,endoscopic NBI technology can be applied to patients.Compared with conventional gastroscopy,it provides a clearer visualization of the structure of the gastric mucosal glandular structure and microvascular structure,with a certain screening rate.Additionally,its sensitivity,specificity,accuracy,positive predictive value,and negative predictive value are higher,demonstrating outstanding effectiveness.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金supported by the National Natural Science Foundation of China(Grant Nos.42322408,42188101,41974211,and 42074202)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC028)+1 种基金the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052500,XDA15350201,and XDA15014800)supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y202045)。
文摘Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images.
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
基金support from the UK Space Agency under Grant Number ST/T002964/1partly supported by the International Space Science Institute(ISSI)in Bern,through ISSI International Team Project Number 523(“Imaging the Invisible:Unveiling the Global Structure of Earth’s Dynamic Magnetosphere”)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.
基金the appreciation to the Deanship of Postgraduate Studies and ScientificResearch atMajmaah University for funding this research work through the Project Number R-2024-922.
文摘This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms.
基金supported by the National Natural Science Foundation of China(No.12305239)Scientific Research Foundation of Chongqing University of Technology(No.2023ZDZ053)National Key R&D Program of China(No.2019YFE03010001).
文摘To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-structured detector ensures that this system can measure HXR-radiation spectra from the entire plasma cross section.Therefore,it is suitable for the study of fast-electron physics,such as radio-frequency wave current drives,fast electrons driving instabilities,and plasma disruptions in fusion research.In this study,we develop a simulation for calculating fast-electron bremsstrahlung in the HL-3 tokamak based on the Monte Carlo simulation code Geant4,in which the plasma geometry and forward scattering of fast-electron bremsstrahlung are considered.The preliminary calculation results indicate that the HXR energy deposi-tion on the detector is symmetrically distributed,even though the plasma distribution is asymmetric owing to the toroidal effect.These simulation results are helpful in constructing the relationship between the energy deposition on the detector and parameter distribution on the plasma cross section during HL-3 experiments.This is beneficial for the reconstruction of the fast-electron-distribution function and for optimizing the design of the HXR-imaging system.
基金supported by start-up funds from the laboratory of H.WFaculty Sponsored Student Research Awards(FSSRA)from the Department of Chemistry and Biochemistry in the College of Science and Mathematics at California State University,Fresno。
文摘In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.
文摘This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively.
基金supported by the Beijing Municipal Science and Technology Commission(BMSTC,No.D171100002617001).
文摘Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies.
基金National Natural Science Foundation of China(No.11805212)National Key Research and Development Program of China(No.2019YFE03080200)。
文摘Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information.Large-field high-resolution monochromatic imaging of a He-like iron(Fe XXV)Kαcharacteristic line(6.701 keV)for laser plasma diagnostics was achieved using a developed toroidal crystal x-ray imager.A high-index crystal orientation Ge(531)wafer with a Bragg angle of 75.37°and the toroidal substrate were selected to obtain sufficient diffraction efficiency and compensate for astigmatism under oblique incidence.A precise offline assembly method of the toroidal crystal imager based on energy substitution was proposed,and a spatial resolution of 3-7μm was obtained by toroidal crystal imaging of a 600 line-pairs/inch Au grid within an object field of view larger than 1.0 mm.The toroidal crystal x-ray imager has been successfully tested via side-on backlight imaging experiments of the sinusoidal modulation target and a 1000 line-pairs/inch Au grid with a linewidth of 5μm using an online alignment method based on dual positioning balls to indicate the target and backlighter.This paper describes the optical design,adjustment method,and experimental results of a toroidal crystal system in a laboratory and laser facility.
文摘BACKGROUND X-ray gastric cancer(GC)screening has been shown to decrease mortality.Population-based X-ray GC screening has been performed in Hiroshima Prefe-cture,Japan,since 1983 but time trends and the efficacy of the method over 39 years have not been assessed.METHODS This was a population-based retrospective study.The data were derived from aggregated data of the Hiroshima Regional Health Medical Promotion Organization,including the number and rate of participants and those requiring esophagogastroduodenoscopies(EGDs),the number and rate of participants diagnosed as having GC,and the positive predictive value of the abnormal findings detected by X-ray and confirmed by EGDs.The number and rate of esophageal cancers were also collected.Further,the cost of detecting one GC was evaluated.RESULTS The number of participants has decreased during the last four decades,from 39925 in 1983 to 12923 in 2021.The rate of those requiring EGDs decreased significantly in recent years(P<0.001).The number of participants diagnosed as having GC has also declined,from 76 to 10 cases.However,the rate of cases diagnosed as GC among the participants remained around 0.1%.The positive predictive value increased significantly in recent years except during 1983-1991.The number and rate of accidentally detected esophageal cancers have risen recently,from 0%in 2008 to 0.02%in 2021,one-fifth of the diagnosis rate of GC.One GC diagnosis costs approximately 4200000 Japanese Yen(30000 United States Dollars)for the X-ray screenings and EGDs.CONCLUSION X-ray GC screening in Hiroshima has been efficient,but one challenge is the cost.Esophageal cancers may also need to be considered because they have gradually increased in recent years.
基金Supported by Health Commission of Shanxi Province,No.2021XM39.
文摘BACKGROUND Percutaneous endoscopic lumbar decompression(PELD)shows promise for lumbar spinal stenosis(LSS)treatment,but its use is limited by the disease's complexity and procedural challenges.AIM In this study,the effects of preoperative planning and intraoperative guidance with computed tomography(CT)/magnetic resonance imaging(MRI)registration techniques on PELD for LSS and postoperative rehabilitation outcomes were evaluated.METHODS This retrospective study was conducted with data from patients who underwent PELD for LSS between January 2021 and December 2023.Patients were assigned to preoperative CT/MRI registration and control groups.Data collected included the operative time,length of hospital stay,visual analog scale(VAS)scores for low back and leg pain,and the Japanese Orthopaedic Association(JOA)lumbar spine score.Differences between groups were assessed using Student’s t test.RESULTS Data from 135 patients(71 in the CT/MRI registration group,64 in the control group)were analyzed.The operative time was significantly shorter in the CT/MRI registration group(P=0.007).At 2 months postoperatively,both groups showed significant reductions in VAS leg and low back pain scores(all P<0.001)and improvements in the JOA score(both P<0.001).No complication or death occurred.Preoperatively,pain and JOA scores were similar between groups(P=0.830,P=0.470,and P=0.287,respectively).At 2 months postoperatively,patients in the CT/MRI registration group reported lower leg and low back pain levels(P<0.001 and P=0.001,respectively)and had higher JOA scores(P=0.004)than did patients in the control group.CONCLUSION Preoperative CT/MRI registration for PELD for LSS reduced the operative time and VAS pain scores at 2 months and improved JOA scores,demonstrating enhanced effectiveness and safety.
基金the financially support of the National Natural Science Foundation of China(12164051)the Joint Foundation of Provincial Science and Technology Department-Double First-class Construction of Yunnan University(2019FY003016)+4 种基金the Young Top Talent Project of Yunnan Province(YNWR-QNBJ-2018-229)the financially support by Yunnan Major Scientific and Technological Projects(202202AG050016)Advanced Analysis and Measurement Center of Yunnan University for the sample characterization service and the Postgraduate Research and Innovation Foundation of Yunnan University(2021Y036)the financially support of the National Natural Science Foundation of China(62064013)the Application Basic Research Project of Yunnan Province[2019FB130]。
文摘Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1532113, 11475170, and 11905041)the Fundamental Research Funds for the Central Universities (Grant No. PA2020GDKC0024)Anhui Provincial Natural Science Foundation, China (Grant No. 2208085MA18)。
文摘X-ray analyzer-based imaging(ABI) is a powerful phase-sensitive technique that can provide a wide dynamic range of density and extract useful physical properties of the sample. It derives contrast from x-ray absorption, refraction, and scattering properties of the investigated sample. However, x-ray ABI setups can be susceptible to external vibrations, and mechanical imprecisions of system components, e.g., the precision of motor, which are unavoidable in practical experiments. Those factors will provoke deviations of analyzer angular positions and hence errors in the acquired image data.Consequently, those errors will introduce artefacts in the retrieved refraction and scattering images. These artefacts are disadvantageous for further image interpretation and tomographic reconstruction. For this purpose, this work aims to analyze image artefacts resulting from deviations of analyzer angular positions. Analytical expressions of the refraction and scattering image artefacts are derived theoretically and validated by synchrotron radiation experiments. The results show that for the refraction image, the artefact is independent of the sample’s absorption and scattering signals. By contrast, artefact of the scattering image is dependent on both the sample’s refraction and scattering signals, but not on absorption signal.Furthermore, the effect of deviations of analyzer angular positions on the accuracy of the retrieved images is investigated,which can be of use for optimization of data acquisition. This work offers the possibility to develop advanced multi-contrast image retrieval algorithms that suppress artefacts in the retrieved refraction and scattering images in x-ray analyzer-based imaging.
基金the Natural Science Foundation of China(Grant Nos.U1532113,11475170,and 11905041)Fundamental Research Funds for the Central Universities(Grant No.PA2020GDKC0024)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18).
文摘X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phasestepping data.The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position.However,stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition.Previous studies have shown that those influences introduce errors in the acquired phase-stepping data,which cause obvious moiréartifacts in the retrieved refraction image.This work investigates moiréartifacts in x-ray dark-field imaging as a result of flux fluctuations.For the retrieved mean intensity,amplitude,visibility and dark-field images,the dependence of moiréartifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion.Results of synchrotron radiation experiments verify the validity of the derived analytical formulas.The spatial frequency characteristics of moiréartifacts are analyzed and compared to those induced by phase-stepping errors.It illustrates that moiréartifacts can be estimated by a weighted mean of flux fluctuation factors,with the weighting factors dependent on the moiréphase and different greatly for each retrieved image.Furthermore,moiréartifacts can even be affected by object’s features not displayed in the particular contrast.These results can be used to interpret images correctly,identify sources of moiréartifacts,and develop dedicated algorithms to remove moiréartifacts in the retrieved multi-contrast images.