Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL...Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.展开更多
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi...The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.展开更多
A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model cor...A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.展开更多
X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image...X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image will happen,which restrict the application of X-ray image,especially in high accuracy fields.Distortion correction can be performed using algorithms that can be classified as global or local according to the method used,both having specific advantages and disadvantages.In this paper,a new global method based on support vector regression(SVR)machine for distortion correction is proposed.In order to test the presented method,a calibration phantom is specially designed for this purpose.A comparison of the proposed method with the traditional global distortion correction techniques is performed.The experimental results show that the proposed correction method performs better than the traditional global one.展开更多
Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential ...Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement inmedical aid and diagnostics.Data analytics,machine learning,and automation techniques can help in early diagnostics and supporting treatments of many reported patients.This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques.Our study suggests that using the Prediction and Deconvolutional Modules in combination with the SSD architecture can improve the performance of the model trained at this task.We used a publicly open CXR image dataset and implemented the detectionmodelwith task-specific pre-processing and near 80:20 split.This achieved a competitive specificity of 0.9474 and a sensibility/accuracy of 0.9597,which shall help better decision-making for various aspects of identification and treat the infection.展开更多
A machining platform of micro wire electrical discharge machining (MWEDM) was developed. The key technology of MWEDM mainly includes granite basement, micro energy pulse generator, detection and servo control system, ...A machining platform of micro wire electrical discharge machining (MWEDM) was developed. The key technology of MWEDM mainly includes granite basement, micro energy pulse generator, detection and servo control system, constant tension winding system and V-block guide wire mechanism. Utilizing micro wire electrode with 30μm in diameter, the MWEDM can machine the micro slot with the minimum size of 38μm wide, and the surface roughness is smaller than 0.1μm, the machining precision is less than 0.5μm, the white layer is no more than 2μm with main cut. All kinds of complex micro parts, such as micro gear, micro bearing bracket and micro shaped holes, can also be machined by using this platform.展开更多
In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specif...In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specific needs within the industry. Deep learning in healthcare had become incredibly powerful for supporting clinics and in transforming patient care in general. Deep learning is increasingly being applied for the detection of clinically important features in the images beyond what can be perceived by the naked human eye. Chest X-ray images are one of the most common clinical method for diagnosing a number of diseases such as pneumonia, lung cancer and many other abnormalities like lesions and fractures. Proper diagnosis of a disease from X-ray images is often challenging task for even expert radiologists and there is a growing need for computerized support systems due to the large amount of information encoded in X-Ray images. The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image. Given an X-ray image as input, our classifier outputs a label vector indicating which of 14 disease classes does the image fall into. Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc. The original study conducted Stanford ML Group is our base line. Original study focuses on predicting 5 diseases. Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research.展开更多
目的:采用两种临床常用粘接剂,对个性化机加工底板托槽、新型网底托槽、双向倒钩底板托槽和传统网底托槽的抗剪切强度(shear bond strength,SBS)进行比较研究,为临床个性化机加工托槽的粘接提供参考。方法:收集48颗新鲜人类前磨牙,随机...目的:采用两种临床常用粘接剂,对个性化机加工底板托槽、新型网底托槽、双向倒钩底板托槽和传统网底托槽的抗剪切强度(shear bond strength,SBS)进行比较研究,为临床个性化机加工托槽的粘接提供参考。方法:收集48颗新鲜人类前磨牙,随机分为8组。A、B组选用个性化机加工底板托槽,C、D组选用新型网底托槽,E、F组选用双向倒钩底板托槽,G、H组选用传统网底托槽;A、C、E、G组使用化学固化粘接剂,B、D、F、H组使用光固化粘接剂。在粘接实验前,在所有托槽中,每种托槽随机选1颗,对其底板在放大40倍、100倍的扫描电镜下进行观察并拍照。使用万能材料实验机,对每组托槽进行SBS的测定,并进行粘接剂残留量(adhesive remnant index,ARI)计分。结果:使用化学固化粘接剂时,其他3种托槽相比,双向倒钩底板托槽粘接强度较低,差异有统计学意义(P<0.05)。使用光固化粘接剂时,双向倒钩底板托槽粘接强度最低,新型网底托槽较低,传统网底托槽和个性化机加工底板托槽粘接强度最高,差异有统计学意义(P<0.05),传统网底托槽和个性化机加工底板托槽之间粘接强度无明显差异(P>0.05)。各组ARI计分差异有统计学意义(P<0.05),进一步比较可得:H组ARI计分最小,且H组与A组和E组的差异有统计学意义(P<0.05)。结论:个性化机加工底板托槽使用光固化粘接剂或使用化学固化粘接剂对其粘接强度无明显影响,粘接强度均能满足正畸临床粘接的要求。H组脱粘接断裂部位相对更接近牙釉质,其余各组牙釉质在脱粘接过程中损伤的风险较小。展开更多
Fe-rich intermetallic phases in recycled Al alloys often exhibit complex and 3D convoluted structures and morphologies.They are the common detrimental intermetallic phases to the mechanical properties of recycled Al a...Fe-rich intermetallic phases in recycled Al alloys often exhibit complex and 3D convoluted structures and morphologies.They are the common detrimental intermetallic phases to the mechanical properties of recycled Al alloys.In this study,we used synchrotron X-ray tomography to study the true 3D morphologies of the Ferich phases,Al_(2)Cu phases and casting defects in an ascast Al-5Cu-1.5Fe-1Si alloy.Machine learning-based image processing approach was used to recognize and segment the diff erent phases in the 3D tomography image stacks.In the studied condition,theβ-Al_(9)Fe_(2)Si_(2)andω-Al_(7)Cu_(2)Fe are found to be the main Fe-rich intermetallic phases.Theβ-Al_(9)Fe_(2)Si_(2)phases exhibit a spatially connected 3D network structure and morphology which in turn control the 3D spatial distribution of the Al_(2)Cu phases and the shrinkage cavities.The Al_(3)Fe phases formed at the early stage of solidification aff ect to a large extent the structure and morphology of the subsequently formed Fe-rich intermetallic phases.The machine learning method has been demonstrated as a powerful tool for processing big datasets in multidimensional imaging-based materials characterization work.展开更多
Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can b...Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267 and 41877260)the Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA13010201).
文摘Different sedimentary zones in coral reefs lead to significant anisotropy in the pore structure of coral reef limestone(CRL),making it difficult to study mechanical behaviors.With X-ray computed tomography(CT),112 CRL samples were utilized for training the support vector machine(SVM)-,random forest(RF)-,and back propagation neural network(BPNN)-based models,respectively.Simultaneously,the machine learning model was embedded into genetic algorithm(GA)for parameter optimization to effectively predict uniaxial compressive strength(UCS)of CRL.Results indicate that the BPNN model with five hidden layers presents the best training effect in the data set of CRL.The SVM-based model shows a tendency to overfitting in the training set and poor generalization ability in the testing set.The RF-based model is suitable for training CRL samples with large data.Analysis of Pearson correlation coefficient matrix and the percentage increment method of performance metrics shows that the dry density,pore structure,and porosity of CRL are strongly correlated to UCS.However,the P-wave velocity is almost uncorrelated to the UCS,which is significantly distinct from the law for homogenous geomaterials.In addition,the pore tensor proposed in this paper can effectively reflect the pore structure of coral framework limestone(CFL)and coral boulder limestone(CBL),realizing the quantitative characterization of the heterogeneity and anisotropy of pore.The pore tensor provides a feasible idea to establish the relationship between pore structure and mechanical behavior of CRL.
文摘The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.
基金financially supported from the National Key Research and Development Program of China(No.2019YFC1803601)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0801)+1 种基金the Postgraduate Innovative Project of Central South University,China(No.2023XQLH068)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.QL20230054)。
文摘A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.
基金National Natural Science Foundation of China(No.61305118)
文摘X-ray image has been widely used in many fields such as medical diagnosis,industrial inspection,and so on.Unfortunately,due to the physical characteristics of X-ray and imaging system,distortion of the projected image will happen,which restrict the application of X-ray image,especially in high accuracy fields.Distortion correction can be performed using algorithms that can be classified as global or local according to the method used,both having specific advantages and disadvantages.In this paper,a new global method based on support vector regression(SVR)machine for distortion correction is proposed.In order to test the presented method,a calibration phantom is specially designed for this purpose.A comparison of the proposed method with the traditional global distortion correction techniques is performed.The experimental results show that the proposed correction method performs better than the traditional global one.
文摘Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement inmedical aid and diagnostics.Data analytics,machine learning,and automation techniques can help in early diagnostics and supporting treatments of many reported patients.This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques.Our study suggests that using the Prediction and Deconvolutional Modules in combination with the SSD architecture can improve the performance of the model trained at this task.We used a publicly open CXR image dataset and implemented the detectionmodelwith task-specific pre-processing and near 80:20 split.This achieved a competitive specificity of 0.9474 and a sensibility/accuracy of 0.9597,which shall help better decision-making for various aspects of identification and treat the infection.
文摘A machining platform of micro wire electrical discharge machining (MWEDM) was developed. The key technology of MWEDM mainly includes granite basement, micro energy pulse generator, detection and servo control system, constant tension winding system and V-block guide wire mechanism. Utilizing micro wire electrode with 30μm in diameter, the MWEDM can machine the micro slot with the minimum size of 38μm wide, and the surface roughness is smaller than 0.1μm, the machining precision is less than 0.5μm, the white layer is no more than 2μm with main cut. All kinds of complex micro parts, such as micro gear, micro bearing bracket and micro shaped holes, can also be machined by using this platform.
文摘In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specific needs within the industry. Deep learning in healthcare had become incredibly powerful for supporting clinics and in transforming patient care in general. Deep learning is increasingly being applied for the detection of clinically important features in the images beyond what can be perceived by the naked human eye. Chest X-ray images are one of the most common clinical method for diagnosing a number of diseases such as pneumonia, lung cancer and many other abnormalities like lesions and fractures. Proper diagnosis of a disease from X-ray images is often challenging task for even expert radiologists and there is a growing need for computerized support systems due to the large amount of information encoded in X-Ray images. The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image. Given an X-ray image as input, our classifier outputs a label vector indicating which of 14 disease classes does the image fall into. Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc. The original study conducted Stanford ML Group is our base line. Original study focuses on predicting 5 diseases. Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research.
文摘目的:采用两种临床常用粘接剂,对个性化机加工底板托槽、新型网底托槽、双向倒钩底板托槽和传统网底托槽的抗剪切强度(shear bond strength,SBS)进行比较研究,为临床个性化机加工托槽的粘接提供参考。方法:收集48颗新鲜人类前磨牙,随机分为8组。A、B组选用个性化机加工底板托槽,C、D组选用新型网底托槽,E、F组选用双向倒钩底板托槽,G、H组选用传统网底托槽;A、C、E、G组使用化学固化粘接剂,B、D、F、H组使用光固化粘接剂。在粘接实验前,在所有托槽中,每种托槽随机选1颗,对其底板在放大40倍、100倍的扫描电镜下进行观察并拍照。使用万能材料实验机,对每组托槽进行SBS的测定,并进行粘接剂残留量(adhesive remnant index,ARI)计分。结果:使用化学固化粘接剂时,其他3种托槽相比,双向倒钩底板托槽粘接强度较低,差异有统计学意义(P<0.05)。使用光固化粘接剂时,双向倒钩底板托槽粘接强度最低,新型网底托槽较低,传统网底托槽和个性化机加工底板托槽粘接强度最高,差异有统计学意义(P<0.05),传统网底托槽和个性化机加工底板托槽之间粘接强度无明显差异(P>0.05)。各组ARI计分差异有统计学意义(P<0.05),进一步比较可得:H组ARI计分最小,且H组与A组和E组的差异有统计学意义(P<0.05)。结论:个性化机加工底板托槽使用光固化粘接剂或使用化学固化粘接剂对其粘接强度无明显影响,粘接强度均能满足正畸临床粘接的要求。H组脱粘接断裂部位相对更接近牙釉质,其余各组牙釉质在脱粘接过程中损伤的风险较小。
基金supported by the National Natural Science Foundation of China(No.52004101)the Guangdong Province Science and Technology Plan(No.2017B090903005)the UK Engineering and Physical Sciences Research Council(Grant No.EP/L019965/1)。
文摘Fe-rich intermetallic phases in recycled Al alloys often exhibit complex and 3D convoluted structures and morphologies.They are the common detrimental intermetallic phases to the mechanical properties of recycled Al alloys.In this study,we used synchrotron X-ray tomography to study the true 3D morphologies of the Ferich phases,Al_(2)Cu phases and casting defects in an ascast Al-5Cu-1.5Fe-1Si alloy.Machine learning-based image processing approach was used to recognize and segment the diff erent phases in the 3D tomography image stacks.In the studied condition,theβ-Al_(9)Fe_(2)Si_(2)andω-Al_(7)Cu_(2)Fe are found to be the main Fe-rich intermetallic phases.Theβ-Al_(9)Fe_(2)Si_(2)phases exhibit a spatially connected 3D network structure and morphology which in turn control the 3D spatial distribution of the Al_(2)Cu phases and the shrinkage cavities.The Al_(3)Fe phases formed at the early stage of solidification aff ect to a large extent the structure and morphology of the subsequently formed Fe-rich intermetallic phases.The machine learning method has been demonstrated as a powerful tool for processing big datasets in multidimensional imaging-based materials characterization work.
文摘Research has shown that chest radiography images of patients with different diseases, such as pneumonia, COVID-19, SARS, pneumothorax, etc., all exhibit some form of abnormality. Several deep learning techniques can be used to identify each of these anomalies in the chest x-ray images. Convolutional neural networks (CNNs) have shown great success in the fields of image recognition and image classification since there are numerous large-scale annotated image datasets available. The classification of medical images, particularly radiographic images, remains one of the biggest hurdles in medical diagnosis because of the restricted availability of annotated medical images. However, such difficulty can be solved by utilizing several deep learning strategies, including data augmentation and transfer learning. The aim was to build a model that would detect abnormalities in chest x-ray images with the highest probability. To do that, different models were built with different features. While making a CNN model, one of the main tasks is to tune the model by changing the hyperparameters and layers so that the model gives out good training and testing results. In our case, three different models were built, and finally, the last one gave out the best-predicted results. From that last model, we got 98% training accuracy, 84% validation, and 81% testing accuracy. The reason behind the final model giving out the best evaluation scores is that it was a well-fitted model. There was no overfitting or underfitting issues. Our aim with this project was to make a tool using the CNN model in R language, which will help detect abnormalities in radiography images. The tool will be able to detect diseases such as Pneumonia, Covid-19, Effusions, Infiltration, Pneumothorax, and others. Because of its high accuracy, this research chose to use supervised multi-class classification techniques as well as Convolutional Neural Networks (CNNs) to classify different chest x-ray images. CNNs are extremely efficient and successful at reducing the number of parameters while maintaining the quality of the primary model. CNNs are also trained to recognize the edges of various objects in any batch of images. CNNs automatically discover the relevant aspects in labeled data and learn the distinguishing features for each class by themselves.