The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth,metastasis,and microenvironmental changes of tumors while challenging traditional imaging and...The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth,metastasis,and microenvironmental changes of tumors while challenging traditional imaging and data processing techniques.In this study,a general trans-scale and multi-modality measurement method was developed for the quantitative diagnosis of hepatocellular carcinoma(HCC)using a combination of propagation-based phase-contrast computed tomography(PPCT),scanning transmission soft X-ray microscopy(STXM),and Fourier transform infrared micro-spectroscopy(FTIR).Our experimental results reveal the trans-scale micro-morpho-logical HCC pathology and facilitate quantitative data analysis and comprehensive assessment.These results include some visualization features of PPCT-based tissue microenvironments,STXM-based cellular fine structures,and FTIR-based bio-macromolecular spectral characteris-tics during HCC tumor differentiation and proliferation.The proposed method provides multidimensional feature data support for constructing a high-accuracy machine learning algorithm based on a gray-level histogram,gray-gradient co-occurrence matrix,gray-level co-occurrence matrix,and back-propagation neural network model.Multi-dimensional information analysis and diagnosis revealed the morphological pathways of HCC pathological evolution and we explored the relationships between HCC-related feature changes in inflammatory microenviron-ments,cellular metabolism,and the stretching vibration peaks of biomolecules of lipids,proteins,and nucleic acids.Therefore,the proposed methodology has strong potential for the visualization of complex tumors and assessing the risks of tumor differentiation and metastasis.展开更多
Since the invention of Zernike phase contrast method in 1930,it has been widely used in optical microscopy and more recently in X-ray microscopy.Considering the image contrast is a mixture of absorption and phase info...Since the invention of Zernike phase contrast method in 1930,it has been widely used in optical microscopy and more recently in X-ray microscopy.Considering the image contrast is a mixture of absorption and phase information,we recently have proposed and demonstrated a method for quantitative phase retrieval in Zernike phase contrast X-ray microscopy.In this contribution,we analyze the performance of this method at different photon energies.Intensity images of PMMA samples are simulated at 2.5 keV and 6.2 keV,respectively,and phase retrieval is performed using the proposed method.The results demonstrate that the proposed phase retrieval method is applicable over a wide energy range.For weakly absorbing features,the optimal photon energy is 2.5 keV,from the point of view of image contrast and accuracy of phase retrieval.On the other hand,in the case of strong absorption objects,a higher photon energy is preferred to reduce the error of phase retrieval.These results can be used as guidelines to perform quantitative phase retrieval in Zernike phase contrast X-ray microscopy with the proposed method.展开更多
Cavitation in plant conduits only involves two processes of air bubbles: the gradual expansion and elongation, and the explosion event. An explosion event of cavitation, which can only occur in intact conduit at water...Cavitation in plant conduits only involves two processes of air bubbles: the gradual expansion and elongation, and the explosion event. An explosion event of cavitation, which can only occur in intact conduit at water tension, trigs acoustic (or ultrasound) emission and induces air to diffuse with high speed, simultaneously. Synchrotron X-ray phase contrast microscopy (XPCM) was used to capture cavitation event in intact conduits of leaves of corn and rice. Cavitation events occur in certain areas of leaves and have a certain time frame. Before XPCM experiment, several preliminary experiments were done as follows: 1) Paraffin sections of leaves of different species were observed to select samples and to determine the occurrence area of cavitation event of leaves. 2) The time frame of cavitation occurrence was determined by ultrasonic emission. 3) The water potentials of leaves were determined, to know the water state of the leaves during cavitation. Locked the area and time frame of cavitation event in the leaves, consecutive XPCM images of cavitation process were more easily acquired. The images show that the phenomenon of gas bubble fully filling conduits for an instant took place in intact conduits of detached leaves of corn and rice more easily. It is that the gas diffusing in a moment was caused by the explosion of the air seeds which had entered in the intact conduits of the leaves. For living plants, it is suggested that the explosion event of cavitation is the most important for embolism formation.展开更多
Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray compute...Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography(CT)and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.展开更多
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2020MA088)Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(No.2019D01C188)+1 种基金National Key Research and Development Program of China(No.2018YFC1200204)National Natural Science Foundation of China(No.12175127).
文摘The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth,metastasis,and microenvironmental changes of tumors while challenging traditional imaging and data processing techniques.In this study,a general trans-scale and multi-modality measurement method was developed for the quantitative diagnosis of hepatocellular carcinoma(HCC)using a combination of propagation-based phase-contrast computed tomography(PPCT),scanning transmission soft X-ray microscopy(STXM),and Fourier transform infrared micro-spectroscopy(FTIR).Our experimental results reveal the trans-scale micro-morpho-logical HCC pathology and facilitate quantitative data analysis and comprehensive assessment.These results include some visualization features of PPCT-based tissue microenvironments,STXM-based cellular fine structures,and FTIR-based bio-macromolecular spectral characteris-tics during HCC tumor differentiation and proliferation.The proposed method provides multidimensional feature data support for constructing a high-accuracy machine learning algorithm based on a gray-level histogram,gray-gradient co-occurrence matrix,gray-level co-occurrence matrix,and back-propagation neural network model.Multi-dimensional information analysis and diagnosis revealed the morphological pathways of HCC pathological evolution and we explored the relationships between HCC-related feature changes in inflammatory microenviron-ments,cellular metabolism,and the stretching vibration peaks of biomolecules of lipids,proteins,and nucleic acids.Therefore,the proposed methodology has strong potential for the visualization of complex tumors and assessing the risks of tumor differentiation and metastasis.
基金Supported by the State Key Project for Fundamental Research(2012CB825801)National Natural Science Foundation of China(11475170,11205157 and 11179004)Anhui Provincial Natural Science Foundation(1508085MA20)
文摘Since the invention of Zernike phase contrast method in 1930,it has been widely used in optical microscopy and more recently in X-ray microscopy.Considering the image contrast is a mixture of absorption and phase information,we recently have proposed and demonstrated a method for quantitative phase retrieval in Zernike phase contrast X-ray microscopy.In this contribution,we analyze the performance of this method at different photon energies.Intensity images of PMMA samples are simulated at 2.5 keV and 6.2 keV,respectively,and phase retrieval is performed using the proposed method.The results demonstrate that the proposed phase retrieval method is applicable over a wide energy range.For weakly absorbing features,the optimal photon energy is 2.5 keV,from the point of view of image contrast and accuracy of phase retrieval.On the other hand,in the case of strong absorption objects,a higher photon energy is preferred to reduce the error of phase retrieval.These results can be used as guidelines to perform quantitative phase retrieval in Zernike phase contrast X-ray microscopy with the proposed method.
文摘Cavitation in plant conduits only involves two processes of air bubbles: the gradual expansion and elongation, and the explosion event. An explosion event of cavitation, which can only occur in intact conduit at water tension, trigs acoustic (or ultrasound) emission and induces air to diffuse with high speed, simultaneously. Synchrotron X-ray phase contrast microscopy (XPCM) was used to capture cavitation event in intact conduits of leaves of corn and rice. Cavitation events occur in certain areas of leaves and have a certain time frame. Before XPCM experiment, several preliminary experiments were done as follows: 1) Paraffin sections of leaves of different species were observed to select samples and to determine the occurrence area of cavitation event of leaves. 2) The time frame of cavitation occurrence was determined by ultrasonic emission. 3) The water potentials of leaves were determined, to know the water state of the leaves during cavitation. Locked the area and time frame of cavitation event in the leaves, consecutive XPCM images of cavitation process were more easily acquired. The images show that the phenomenon of gas bubble fully filling conduits for an instant took place in intact conduits of detached leaves of corn and rice more easily. It is that the gas diffusing in a moment was caused by the explosion of the air seeds which had entered in the intact conduits of the leaves. For living plants, it is suggested that the explosion event of cavitation is the most important for embolism formation.
文摘Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography(CT)and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.