During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China,...The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed.展开更多
Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing tech...Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.展开更多
A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented. The photon temperature increases with the increase in plasma current and decreases wi...A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented. The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density. In lower hybrid power and phase scanning experiments; there is no appreciable change in the photon temperature. The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation. Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population, synergy between the fast electron and the loop voltage and the Coulomb slowing down.展开更多
X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from ...X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phasestepping data.The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position.However,stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition.Previous studies have shown that those influences introduce errors in the acquired phase-stepping data,which cause obvious moiréartifacts in the retrieved refraction image.This work investigates moiréartifacts in x-ray dark-field imaging as a result of flux fluctuations.For the retrieved mean intensity,amplitude,visibility and dark-field images,the dependence of moiréartifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion.Results of synchrotron radiation experiments verify the validity of the derived analytical formulas.The spatial frequency characteristics of moiréartifacts are analyzed and compared to those induced by phase-stepping errors.It illustrates that moiréartifacts can be estimated by a weighted mean of flux fluctuation factors,with the weighting factors dependent on the moiréphase and different greatly for each retrieved image.Furthermore,moiréartifacts can even be affected by object’s features not displayed in the particular contrast.These results can be used to interpret images correctly,identify sources of moiréartifacts,and develop dedicated algorithms to remove moiréartifacts in the retrieved multi-contrast images.展开更多
Reasons are given for a Doppler shift on the number of observed (sensed) photons in a light beam not just a shift in frequency, also a similar (non-relativistic) effect on the number of observed (sensed) particles (wi...Reasons are given for a Doppler shift on the number of observed (sensed) photons in a light beam not just a shift in frequency, also a similar (non-relativistic) effect on the number of observed (sensed) particles (with non-zero rest mass) in a particle beam. Optics texts have neither effect.展开更多
Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° n...Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° north. The study included 10 different treatments and six rose cultivars, altogether 900 plants. The 16 and 20 h LP were applied with or without a dark period of 8 and 4 h·day-1, respectively, by timing the LP in relation to daylight that lasted for 7 - 8 h. Number of days until flowering decreased with an increase in PFD and in LP up to 24 day-1 and was unaffected by the timing of the 16 and 20 h·day-1 LP. Number of flowers and plant dry weight increased 20% to 30% by increasing the PFD. Plant dry weight increased by increasing the LP from 16 to 20 h·day-1 (about 25%), but no effect was found with a further increase to 24 h·day-1. Mean growth rate until flowering increased 30% to 40% by increasing the PFD or by increasing the LP from 16 to 20 h day-1, while little effect was found by a further increase to 24 h·day-1. Increasing the photosynthetic active radiation (PAR) by increasing the LP from 16 to 20 h·day-1 increased the growth rate more than increasing the PFD did. Three of the cultivars were tested for water loss after the detachment of some leaves. Leaves that had developed without a dark period showed a considerably higher water loss than the treatments that included a dark period of 4 or 8 h·day-1. The keeping quality at indoor conditions, however, was unaffected by the treatment due to sufficient watering. Powdery mildew developed significantly more on plants grown with a dark period of 8 h as compared with the other treatments. It was concluded that 20 h·day-1 LP including a dark period of 4 h·day-1 and a PFD of at least 150 μmol·m-2·s-1 should be applied to miniature roses during the winter months in order to effectively produce miniature pot roses with a high quality.展开更多
X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon countin...X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode(model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 ke V with good energy resolution(E /?E ≈ 100 at60 ke V). The difference in detection efficiency between two CCD cameras is small(5.6% at 5.89 ke V), but the difference in fraction of the single pixel event between them is much larger(25% at 8.04 ke V). The obtained small relative error of detection efficiency(2.4% at 5.89 ke V) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 ke V–30 ke V.展开更多
The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security...The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security fields. It requires two tomographic images at sufficiently different energies. To discriminate dangerous materials of light elements such as plastic bombs in luggage, it is needed to measure accurately with several tens of kilo electron volts where such materials exhibit significant spectral differences. However, CT images in that energy region often include artifacts from beam hardening. To reduce these artifacts, a novel reconstruction method has been investigated. It is an extension of the Al-gebraic Reconstruction Technique and Total Variation (ART-TV) method that reduces the artifacts in a lower-energy CT image by referencing it to an image obtained at higher energy. The CT image of a titanium sample was recon-structed using this method in order to demonstrate the artifact reduction capability.展开更多
The present work presents an overview of the study of some dosimetric quantities in the vicinity of the Tunisian Gamma Irradiation Facility. Firstly, we have confirmed our previous calculation of the photon flux and t...The present work presents an overview of the study of some dosimetric quantities in the vicinity of the Tunisian Gamma Irradiation Facility. Firstly, we have confirmed our previous calculation of the photon flux and the dose rates, using a simulation with GEANT 4. A good agreement between calculation and simulation was obtained, which well confirmed the modeling of the CNSTN extended source by a pencil-like source. Secondly we have determined the isodose curves in the vicinity of the irradiator using a straightforward calculation. Finally, we have presented many comments for some published work concerning the methods used to determine these dosimetric quantities.展开更多
Photon counting detectors(PCDs) have attained w ide use in X-ray imaging for various preclinical and clinical applications in the past decade. This paper briefly review s the preclinical and clinical applications of P...Photon counting detectors(PCDs) have attained w ide use in X-ray imaging for various preclinical and clinical applications in the past decade. This paper briefly review s the preclinical and clinical applications of PCDs based X-ray imaging systems.Starting with an introduction of X-ray single photon detection mechanism,the brief review first describes tw o major advantages of utilizing PCDs: photon energy resolving capability and electronic noise elimination. Compared to energy integrating detectors(EIDs),the aforementioned advantages make PCDs more favorable in X-ray imaging with profound benefits such as enhanced tissue contrast,decreased image noise,increased signal to noise ratio,decreased radiation dose to the small animals and patients,and more accurate material decomposition. The utilizations of PCDs in X-ray projection radiography and computed tomography(CT)including micro-CT,dedicated breast CT,K-edge CT,and clinical CT are then review ed for the imaging applications ranging from phantoms to small animals and humans. In addition,optimization methods aiming to improve the imaging performance using PCDs are briefly review ed. PCDs are not flaw less though,and their limitations are also discussed in this review. Nevertheless,PCDs may continuously contribute to the advancement of X-ray imaging techniques in future preclinical and clinical applications.展开更多
To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light source...To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.展开更多
The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of mine...The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of minerals in coal ash and slag upon the change of temperature was studied by using X-ray diffraction(XRD). With the increase of temperatures, forsterite in the ash disappears, while the diffraction peak strength of magnesium spinel increases,and the content of the calcium feldspar increases, then the content of the amorphous phase in the ash increases obviously. The species and evolution process of oxygen, silicon, aluminum, calcium, magnesium at different temperatures were analyzed by X-ray photoelectron spectroscopy(XPS). The decrease of the ash melting point mainly affects the structural changes of silicon, aluminum and oxygen. The coordination of aluminum and oxygen in the aluminum element structure, e.g., tetracoordinated aluminum oxide, was changed. Tetrahedral [AlO4] and hexacoordinated aluminoxy octahedral [AlO6] change with the temperature changing. The addition of Ca2+ and Mg2+ destroys silica chain, making bridge oxide silicon change into non-bridge oxysilicon;and bridge oxygen bond was broken and non-bridge oxygen bond was produced in the oxygen element structure. The addition of calcium and magnesium compound flux reacts with aluminum oxide tetrahedron, aluminum oxide octahedron and silicon tetrahedron to promote the breakage of the bridge oxygen bond. Ca2+ and Mg2+ are easily combined with silicon oxide and aluminum oxide tetrahedron and aluminum. Oxygen octahedrons combine with non-oxygen bonds to generate low-melting temperature feldspars and magnesite minerals, thereby reducing the coal ash melting temperatures. The structure of kaolinite and mullite was simulated by quantum chemistry calculation, and kaolinite molecule has a stable structure.展开更多
The interaction of oxide film with molten flux during aluminum brazing has been studied by means of X-ray powder diffraction. The following conclusions have been deduced: The swell- ing of aluminum oxide film is cause...The interaction of oxide film with molten flux during aluminum brazing has been studied by means of X-ray powder diffraction. The following conclusions have been deduced: The swell- ing of aluminum oxide film is caused by Li^+ inserting into the vacancies of octahedral or tetrahedral structure of 0 atom skeleton in у-Al_2O_3 . The strength of oxide film decreases as the crytallinity increases by the treating of flux containing LiF.展开更多
In this study, Nocolok eutectic flux,used widely in the process of the brazing of aluminum and its alloy, was prepared by the reaction between Al(OH) 3/KOH resolution and HF. A series of KF-AlF 3 eutectic productions ...In this study, Nocolok eutectic flux,used widely in the process of the brazing of aluminum and its alloy, was prepared by the reaction between Al(OH) 3/KOH resolution and HF. A series of KF-AlF 3 eutectic productions at various reaction temperatures were prepared. The melting points of the products were measured by differential thermal analysis (DTA), and the composites were characterized by X-ray diffraction (XRD). The results suggest that the temperature control is important to produce an ideal flux consisting of K 2AlF 5, H 2O and KAlF 4, with a low melting point of 560 ℃,which is suitable for the brazing of aluminum and its alloy as the aluminum fluxes.展开更多
We have calculated the intrinsic magnetic moment of a photon through the intrinsic magnetic moment of a gamma photon created as a result of the electron-positron annihilation with the angular frequency ω. We show tha...We have calculated the intrinsic magnetic moment of a photon through the intrinsic magnetic moment of a gamma photon created as a result of the electron-positron annihilation with the angular frequency ω. We show that a photon propagating in z direction with an angular frequency ω carries a magnetic moment of μz = ±(ec/ω) along the propagation direction. Here, the (+) and (-) signs stand for the right hand and left circular helicity respectively. Because of these two symmetric values of the magnetic moment, we expect a splitting of the photon beam into two symmetric subbeams in a Stern-Gerlach experiment. The splitting is expected to be more prominent for low energy photons. We believe that the present result will be helpful for understanding the recent attempts on the Stern-Gerlach experiment with slow light and the behavior of the dark polaritons and also the atomic spinor polaritons.展开更多
To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comp...To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comparators, two microcomputers, and two frequency-voltage converters. X-ray photons are detected using the detector system, and the event pulses are input to three comparators simultaneously to determine threshold energies. At a tube voltage of 100 kV, the three threshold energies are 16, 35 and 52 keV, and two energy ranges are 16 - 35 and 52 - 100 keV. X-ray photons in the two ranges are counted using microcomputers, and the logical pulses from the two microcomputers are input to two frequency-voltage converters. In dual-energy computed tomography (CT), the tube voltage and current were 100 kV and 0.29 mA, respectively. Two tomograms were obtained simultaneously at two energy ranges. The energy ranges for gadolinium-L-edge and K-edge CT were 16 - 35 and 52 - 100 keV, respectively. The maximum count rate of dual-energy CT was 105 kilocounts per second with energies ranging from 16 to 100 keV, and the exposure time for tomography was 19.6 min.展开更多
BACKGROUND Pancreatic neuroendocrine tumors(NETs)account for about 1%–2%of pancreatic tumors and about 8%of all NETs.Computed tomography(CT),magnetic resonance imaging,and endoscopic ultrasound are common imaging mod...BACKGROUND Pancreatic neuroendocrine tumors(NETs)account for about 1%–2%of pancreatic tumors and about 8%of all NETs.Computed tomography(CT),magnetic resonance imaging,and endoscopic ultrasound are common imaging modalities for the diagnosis of pancreatic NETs.Furthermore,somatostatin receptor imaging is of great value for diagnosing pancreatic NETs.Herein,we report the efficacy of technetium-99m methoxy-2-isobutylisonitrile(99mTc-MIBI)single photon emission CT(SPECT)/CT for detecting pancreatic NETs.CASE SUMMARY A 57-year-old woman presented to our hospital with a 1-d history of persistent upper abdominal distending pain.The distending pain in the upper abdomen was aggravated after eating,with nausea and retching.Routine blood test results showed a high neutrophil percentage,low leukomonocyte and monocyte percentages,and low leukomonocyte and eosinophil counts.Amylase,liver and kidney function,and tumor markers alpha-fetoprotein,carcinoembryonic antigen,and cancer antigen(CA)125,CA72-4,CA19-9,and CA153 were normal.Abdominal CT showed a mass,with multiple calcifications between the pancreas and the spleen.The boundary between the mass and the pancreas and spleen was poorly defined.Contrast-enhanced CT revealed that the upper abdominal mass was unevenly and gradually enhanced.99mTc-MIBI SPECT/CT revealed that a focal radioactive concentration,with mild radioactive concentration extending into the upper abdominal mass,was present at the pancreatic body and tail.The 99mTc-MIBI SPECT/CT manifestations were consistent with the final pathological diagnosis of pancreatic NET.CONCLUSION 99mTc-MIBI SPECT/CT appears to be a valuable tool for detecting pancreatic NETs.展开更多
High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and m...High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and magnetic field unpin the flux vortices and so cause electromagnetic resistivity in high temperature superconductors. Materials with higher vortex pinning exhibit less resistivity and are more attractive for industrial uses. In the present article, we measured and correlated the pinning flux energy barrier, determined by AC magnetic measurements, and transmission electron microscopy measurements to the critical current Jc in Yttrium- and Silver-doped MgB2 superconductors. The energy of the flux vortex was evaluated as a function of the magnetic field. The energy barrier curves suggest an optimal doping level to occur in doped materials. This result only depends on the optimal size and distribution of precipitates, and not on their chemical composition. The energy barriers have been compared with that of undoped MgB2 in literature.展开更多
Single crystals of La4Mo7O27 have been successfully grown by the flux growth method H3BO3 as the flux in a plantium crucible using the starting materials of La2O3, H3BO3 and MoO3 in a molar ratio of 0.16:0.16:0.68, in...Single crystals of La4Mo7O27 have been successfully grown by the flux growth method H3BO3 as the flux in a plantium crucible using the starting materials of La2O3, H3BO3 and MoO3 in a molar ratio of 0.16:0.16:0.68, in which H3BO3 acted as a flux. Transparent colorless crystals were obtained with size of 0.8 × 0.3 × 0.2 mm3 under the optimized crystal growth conditions: growth temperature of 727°C, growth time of 95 h and cooling rate of 0.5°C/hr. A well-developed morphology of the crystals was observed and analyzed. The preparation process of starting materials on crystal growth was investigated. The grown crystals were characterized by powder X-ray diffraction (PXRD), EDAX, SEM, UV-Vis, photoluminescence studies, thermal analysis, dielectric studies and second harmonic generation (SHG). The results are presented and discussed.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
文摘The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed.
基金the European Research Council for starting grant 200141-QuESpace,with which the Vlasiator model was developedconsolidator grant 682068-PRESTISSIMO awarded for further development of Vlasiator and its use in scientific investigations+4 种基金Academy of Finland grant numbers 338629-AERGELC’H,339756-KIMCHI,336805-FORESAIL,and 335554-ICT-SUNVACThe Academy of Finland also supported this work through the PROFI4 grant(grant number 3189131)support from the NASA grants,80NSSC20K1670 and 80MSFC20C0019the NASA GSFC FY23 IRADHIF funds。
文摘Solar wind charge exchange produces emissions in the soft X-ray energy range which can enable the study of near-Earth space regions such as the magnetopause,the magnetosheath and the polar cusps by remote sensing techniques.The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)and Lunar Environment heliospheric X-ray Imager(LEXI)missions aim to obtain soft Xray images of near-Earth space thanks to their Soft X-ray Imager(SXI)instruments.While earlier modeling works have already simulated soft X-ray images as might be obtained by SMILE SXI during its mission,the numerical models used so far are all based on the magnetohydrodynamics description of the space plasma.To investigate the possible signatures of ion-kinetic-scale processes in soft Xray images,we use for the first time a global hybrid-Vlasov simulation of the geospace from the Vlasiator model.The simulation is driven by fast and tenuous solar wind conditions and purely southward interplanetary magnetic field.We first produce global X-ray images of the dayside near-Earth space by placing a virtual imaging satellite at two different locations,providing meridional and equatorial views.We then analyze regional features present in the images and show that they correspond to signatures in soft X-ray emissions of mirrormode wave structures in the magnetosheath and flux transfer events(FTEs)at the magnetopause.Our results suggest that,although the time scales associated with the motion of those transient phenomena will likely be significantly smaller than the integration time of the SMILE and LEXI imagers,mirror-mode structures and FTEs can cumulatively produce detectable signatures in the soft X-ray images.For instance,a local increase by 30%in the proton density at the dayside magnetopause resulting from the transit of multiple FTEs leads to a 12%enhancement in the line-of-sight-and time-integrated soft X-ray emissivity originating from this region.Likewise,a proton density increase by 14%in the magnetosheath associated with mirror-mode structures can result in an enhancement in the soft X-ray signal by 4%.These are likely conservative estimates,given that the solar wind conditions used in the Vlasiator run can be expected to generate weaker soft X-ray emissions than the more common denser solar wind.These results will contribute to the preparatory work for the SMILE and LEXI missions by providing the community with quantitative estimates of the effects of small-scale,transient phenomena occurring on the dayside.
基金supported by National Natural Science Foundation of China(Nos.10235010,10725523)
文摘A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented. The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density. In lower hybrid power and phase scanning experiments; there is no appreciable change in the photon temperature. The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation. Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population, synergy between the fast electron and the loop voltage and the Coulomb slowing down.
基金the Natural Science Foundation of China(Grant Nos.U1532113,11475170,and 11905041)Fundamental Research Funds for the Central Universities(Grant No.PA2020GDKC0024)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18).
文摘X-ray dark-field imaging using a grating interferometer has shown potential benefits for a variety of applications in recent years.X-ray dark-field image is commonly retrieved by using discrete Fourier transform from the acquired phasestepping data.The retrieval process assumes a constant phase step size and a constant flux for each stepped grating position.However,stepping errors and flux fluctuations inevitably occur due to external vibrations and/or thermal drift during data acquisition.Previous studies have shown that those influences introduce errors in the acquired phase-stepping data,which cause obvious moiréartifacts in the retrieved refraction image.This work investigates moiréartifacts in x-ray dark-field imaging as a result of flux fluctuations.For the retrieved mean intensity,amplitude,visibility and dark-field images,the dependence of moiréartifacts on flux fluctuation factors is theoretically derived respectively by using a first-order Taylor series expansion.Results of synchrotron radiation experiments verify the validity of the derived analytical formulas.The spatial frequency characteristics of moiréartifacts are analyzed and compared to those induced by phase-stepping errors.It illustrates that moiréartifacts can be estimated by a weighted mean of flux fluctuation factors,with the weighting factors dependent on the moiréphase and different greatly for each retrieved image.Furthermore,moiréartifacts can even be affected by object’s features not displayed in the particular contrast.These results can be used to interpret images correctly,identify sources of moiréartifacts,and develop dedicated algorithms to remove moiréartifacts in the retrieved multi-contrast images.
文摘Reasons are given for a Doppler shift on the number of observed (sensed) photons in a light beam not just a shift in frequency, also a similar (non-relativistic) effect on the number of observed (sensed) particles (with non-zero rest mass) in a particle beam. Optics texts have neither effect.
文摘Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° north. The study included 10 different treatments and six rose cultivars, altogether 900 plants. The 16 and 20 h LP were applied with or without a dark period of 8 and 4 h·day-1, respectively, by timing the LP in relation to daylight that lasted for 7 - 8 h. Number of days until flowering decreased with an increase in PFD and in LP up to 24 day-1 and was unaffected by the timing of the 16 and 20 h·day-1 LP. Number of flowers and plant dry weight increased 20% to 30% by increasing the PFD. Plant dry weight increased by increasing the LP from 16 to 20 h·day-1 (about 25%), but no effect was found with a further increase to 24 h·day-1. Mean growth rate until flowering increased 30% to 40% by increasing the PFD or by increasing the LP from 16 to 20 h day-1, while little effect was found by a further increase to 24 h·day-1. Increasing the photosynthetic active radiation (PAR) by increasing the LP from 16 to 20 h·day-1 increased the growth rate more than increasing the PFD did. Three of the cultivars were tested for water loss after the detachment of some leaves. Leaves that had developed without a dark period showed a considerably higher water loss than the treatments that included a dark period of 4 or 8 h·day-1. The keeping quality at indoor conditions, however, was unaffected by the treatment due to sufficient watering. Powdery mildew developed significantly more on plants grown with a dark period of 8 h as compared with the other treatments. It was concluded that 20 h·day-1 LP including a dark period of 4 h·day-1 and a PFD of at least 150 μmol·m-2·s-1 should be applied to miniature roses during the winter months in order to effectively produce miniature pot roses with a high quality.
基金Project supported by the Science Foundation of China Academy of Engineering Physics(Grant Nos.2013A0103003 and 2012B0102008)the National High-Tech Inertial Confinement Fusion Committee of China
文摘X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode(model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 ke V with good energy resolution(E /?E ≈ 100 at60 ke V). The difference in detection efficiency between two CCD cameras is small(5.6% at 5.89 ke V), but the difference in fraction of the single pixel event between them is much larger(25% at 8.04 ke V). The obtained small relative error of detection efficiency(2.4% at 5.89 ke V) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 ke V–30 ke V.
文摘The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security fields. It requires two tomographic images at sufficiently different energies. To discriminate dangerous materials of light elements such as plastic bombs in luggage, it is needed to measure accurately with several tens of kilo electron volts where such materials exhibit significant spectral differences. However, CT images in that energy region often include artifacts from beam hardening. To reduce these artifacts, a novel reconstruction method has been investigated. It is an extension of the Al-gebraic Reconstruction Technique and Total Variation (ART-TV) method that reduces the artifacts in a lower-energy CT image by referencing it to an image obtained at higher energy. The CT image of a titanium sample was recon-structed using this method in order to demonstrate the artifact reduction capability.
文摘The present work presents an overview of the study of some dosimetric quantities in the vicinity of the Tunisian Gamma Irradiation Facility. Firstly, we have confirmed our previous calculation of the photon flux and the dose rates, using a simulation with GEANT 4. A good agreement between calculation and simulation was obtained, which well confirmed the modeling of the CNSTN extended source by a pencil-like source. Secondly we have determined the isodose curves in the vicinity of the irradiator using a straightforward calculation. Finally, we have presented many comments for some published work concerning the methods used to determine these dosimetric quantities.
基金supported in part by a grant from the University of Oklahoma Charles and Peggy Stephenson Cancer Center funded by the Oklahoma Tobacco Settlement Endowment Trust
文摘Photon counting detectors(PCDs) have attained w ide use in X-ray imaging for various preclinical and clinical applications in the past decade. This paper briefly review s the preclinical and clinical applications of PCDs based X-ray imaging systems.Starting with an introduction of X-ray single photon detection mechanism,the brief review first describes tw o major advantages of utilizing PCDs: photon energy resolving capability and electronic noise elimination. Compared to energy integrating detectors(EIDs),the aforementioned advantages make PCDs more favorable in X-ray imaging with profound benefits such as enhanced tissue contrast,decreased image noise,increased signal to noise ratio,decreased radiation dose to the small animals and patients,and more accurate material decomposition. The utilizations of PCDs in X-ray projection radiography and computed tomography(CT)including micro-CT,dedicated breast CT,K-edge CT,and clinical CT are then review ed for the imaging applications ranging from phantoms to small animals and humans. In addition,optimization methods aiming to improve the imaging performance using PCDs are briefly review ed. PCDs are not flaw less though,and their limitations are also discussed in this review. Nevertheless,PCDs may continuously contribute to the advancement of X-ray imaging techniques in future preclinical and clinical applications.
基金supported by National Natural Science Foundation of China(No.11475202,11405187)the Youth Innovation Association of Chinese Academy of SciencesKey Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH001)
文摘To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.
基金Supported partially by the Major Science and Technology Special Projects Foundation of Anhui Province(15czz02045)the Natural Science Foundation of Anhui Province(1508085MB41)the China Postdoctoral Science Foundation(2015M571915)
文摘The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of minerals in coal ash and slag upon the change of temperature was studied by using X-ray diffraction(XRD). With the increase of temperatures, forsterite in the ash disappears, while the diffraction peak strength of magnesium spinel increases,and the content of the calcium feldspar increases, then the content of the amorphous phase in the ash increases obviously. The species and evolution process of oxygen, silicon, aluminum, calcium, magnesium at different temperatures were analyzed by X-ray photoelectron spectroscopy(XPS). The decrease of the ash melting point mainly affects the structural changes of silicon, aluminum and oxygen. The coordination of aluminum and oxygen in the aluminum element structure, e.g., tetracoordinated aluminum oxide, was changed. Tetrahedral [AlO4] and hexacoordinated aluminoxy octahedral [AlO6] change with the temperature changing. The addition of Ca2+ and Mg2+ destroys silica chain, making bridge oxide silicon change into non-bridge oxysilicon;and bridge oxygen bond was broken and non-bridge oxygen bond was produced in the oxygen element structure. The addition of calcium and magnesium compound flux reacts with aluminum oxide tetrahedron, aluminum oxide octahedron and silicon tetrahedron to promote the breakage of the bridge oxygen bond. Ca2+ and Mg2+ are easily combined with silicon oxide and aluminum oxide tetrahedron and aluminum. Oxygen octahedrons combine with non-oxygen bonds to generate low-melting temperature feldspars and magnesite minerals, thereby reducing the coal ash melting temperatures. The structure of kaolinite and mullite was simulated by quantum chemistry calculation, and kaolinite molecule has a stable structure.
文摘The interaction of oxide film with molten flux during aluminum brazing has been studied by means of X-ray powder diffraction. The following conclusions have been deduced: The swell- ing of aluminum oxide film is caused by Li^+ inserting into the vacancies of octahedral or tetrahedral structure of 0 atom skeleton in у-Al_2O_3 . The strength of oxide film decreases as the crytallinity increases by the treating of flux containing LiF.
文摘In this study, Nocolok eutectic flux,used widely in the process of the brazing of aluminum and its alloy, was prepared by the reaction between Al(OH) 3/KOH resolution and HF. A series of KF-AlF 3 eutectic productions at various reaction temperatures were prepared. The melting points of the products were measured by differential thermal analysis (DTA), and the composites were characterized by X-ray diffraction (XRD). The results suggest that the temperature control is important to produce an ideal flux consisting of K 2AlF 5, H 2O and KAlF 4, with a low melting point of 560 ℃,which is suitable for the brazing of aluminum and its alloy as the aluminum fluxes.
文摘We have calculated the intrinsic magnetic moment of a photon through the intrinsic magnetic moment of a gamma photon created as a result of the electron-positron annihilation with the angular frequency ω. We show that a photon propagating in z direction with an angular frequency ω carries a magnetic moment of μz = ±(ec/ω) along the propagation direction. Here, the (+) and (-) signs stand for the right hand and left circular helicity respectively. Because of these two symmetric values of the magnetic moment, we expect a splitting of the photon beam into two symmetric subbeams in a Stern-Gerlach experiment. The splitting is expected to be more prominent for low energy photons. We believe that the present result will be helpful for understanding the recent attempts on the Stern-Gerlach experiment with slow light and the behavior of the dark polaritons and also the atomic spinor polaritons.
文摘To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comparators, two microcomputers, and two frequency-voltage converters. X-ray photons are detected using the detector system, and the event pulses are input to three comparators simultaneously to determine threshold energies. At a tube voltage of 100 kV, the three threshold energies are 16, 35 and 52 keV, and two energy ranges are 16 - 35 and 52 - 100 keV. X-ray photons in the two ranges are counted using microcomputers, and the logical pulses from the two microcomputers are input to two frequency-voltage converters. In dual-energy computed tomography (CT), the tube voltage and current were 100 kV and 0.29 mA, respectively. Two tomograms were obtained simultaneously at two energy ranges. The energy ranges for gadolinium-L-edge and K-edge CT were 16 - 35 and 52 - 100 keV, respectively. The maximum count rate of dual-energy CT was 105 kilocounts per second with energies ranging from 16 to 100 keV, and the exposure time for tomography was 19.6 min.
文摘BACKGROUND Pancreatic neuroendocrine tumors(NETs)account for about 1%–2%of pancreatic tumors and about 8%of all NETs.Computed tomography(CT),magnetic resonance imaging,and endoscopic ultrasound are common imaging modalities for the diagnosis of pancreatic NETs.Furthermore,somatostatin receptor imaging is of great value for diagnosing pancreatic NETs.Herein,we report the efficacy of technetium-99m methoxy-2-isobutylisonitrile(99mTc-MIBI)single photon emission CT(SPECT)/CT for detecting pancreatic NETs.CASE SUMMARY A 57-year-old woman presented to our hospital with a 1-d history of persistent upper abdominal distending pain.The distending pain in the upper abdomen was aggravated after eating,with nausea and retching.Routine blood test results showed a high neutrophil percentage,low leukomonocyte and monocyte percentages,and low leukomonocyte and eosinophil counts.Amylase,liver and kidney function,and tumor markers alpha-fetoprotein,carcinoembryonic antigen,and cancer antigen(CA)125,CA72-4,CA19-9,and CA153 were normal.Abdominal CT showed a mass,with multiple calcifications between the pancreas and the spleen.The boundary between the mass and the pancreas and spleen was poorly defined.Contrast-enhanced CT revealed that the upper abdominal mass was unevenly and gradually enhanced.99mTc-MIBI SPECT/CT revealed that a focal radioactive concentration,with mild radioactive concentration extending into the upper abdominal mass,was present at the pancreatic body and tail.The 99mTc-MIBI SPECT/CT manifestations were consistent with the final pathological diagnosis of pancreatic NET.CONCLUSION 99mTc-MIBI SPECT/CT appears to be a valuable tool for detecting pancreatic NETs.
文摘High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and magnetic field unpin the flux vortices and so cause electromagnetic resistivity in high temperature superconductors. Materials with higher vortex pinning exhibit less resistivity and are more attractive for industrial uses. In the present article, we measured and correlated the pinning flux energy barrier, determined by AC magnetic measurements, and transmission electron microscopy measurements to the critical current Jc in Yttrium- and Silver-doped MgB2 superconductors. The energy of the flux vortex was evaluated as a function of the magnetic field. The energy barrier curves suggest an optimal doping level to occur in doped materials. This result only depends on the optimal size and distribution of precipitates, and not on their chemical composition. The energy barriers have been compared with that of undoped MgB2 in literature.
文摘Single crystals of La4Mo7O27 have been successfully grown by the flux growth method H3BO3 as the flux in a plantium crucible using the starting materials of La2O3, H3BO3 and MoO3 in a molar ratio of 0.16:0.16:0.68, in which H3BO3 acted as a flux. Transparent colorless crystals were obtained with size of 0.8 × 0.3 × 0.2 mm3 under the optimized crystal growth conditions: growth temperature of 727°C, growth time of 95 h and cooling rate of 0.5°C/hr. A well-developed morphology of the crystals was observed and analyzed. The preparation process of starting materials on crystal growth was investigated. The grown crystals were characterized by powder X-ray diffraction (PXRD), EDAX, SEM, UV-Vis, photoluminescence studies, thermal analysis, dielectric studies and second harmonic generation (SHG). The results are presented and discussed.