A uranyl compound, K_4UO_2(CO_3)_3 has been characterized by powder X-ray diffraction method. M. W.=606.46, monoclinic, C2/c (No. 15), a=1.0240(7), b=0.9198(4), c=1.2222(12)nm, β=95.12(4)°,V=1.1466(5)nm^3, Z=4, ...A uranyl compound, K_4UO_2(CO_3)_3 has been characterized by powder X-ray diffraction method. M. W.=606.46, monoclinic, C2/c (No. 15), a=1.0240(7), b=0.9198(4), c=1.2222(12)nm, β=95.12(4)°,V=1.1466(5)nm^3, Z=4, D_m=3.468g/cm^3, D_c=3.513g/cm~, λ(Cu Kα_1)=O.1540598nm, T=298K. The structure was solved by heavy atom method and Fourier synthesis, and refined by full- matrix least-squares method to R=0.1185 for 275 reflections. The uranium (Ⅵ) atom is in an eight-coordinate distorted hexagonal-bipyramidal environment with creasy fan shape. The linear uranyl group approaches to perpendicular to the equatorial plane in which three carbonate groups are chelated. U(Ⅵ) has two linear oxygen atoms closer to it (U-O=0.1767 (5) nm) than six other neighbours (U-O ranging from 0.2516 to 0.2568nm). The distances between carbon atoms and uncoordinated oxygen atoms are 0.122 (1) and 0.123(1) nm, which are distinctly different from those between carbon and coordinated oxygen atoms (mean 0.134(6) nm). This fact reveals the non-eq- uivalence of one oxygen atom to the other two in each carbonate. In K_4UO_2(CO_3)_3, the O-O dis- tance for the adjacent carbonate groups is 0.2794(4)nm approaching to the sum of Van der Waals radii of two oxygen atoms. The K-O distances vary between 0.2667 and 0.3131nm, and each anion is immediately surrounded by six potassium ions, only four of which can be considered to belong to the same structural formula unit, and they are symmetrically located above and below the equatorial plane.展开更多
Homogeneous BaTiO3 fine powder has been synthesized at (80°C) by using three different chemical methods using the roots TiCl4, BaCl2 and NaOH or Oxalic acid. The resultant powders were characterized using x-ray d...Homogeneous BaTiO3 fine powder has been synthesized at (80°C) by using three different chemical methods using the roots TiCl4, BaCl2 and NaOH or Oxalic acid. The resultant powders were characterized using x-ray diffraction (XRD) to estimate the crystal structure, lattice parameters and the crystallite size to investigate the favor method in producing BaTiO3 fine powder. The criteria that was dependent on considering the favor method that was given better results of XRD and demand a least time in preparation which tend to consume a lowest energy.展开更多
Various compositions of the system BaxSr1-xTiO3 (BST) have been elaborated both as fine powders and ceramic monoliths, using the co-precipitation route within a warmed supersaturated solution of oxalic acid. The appro...Various compositions of the system BaxSr1-xTiO3 (BST) have been elaborated both as fine powders and ceramic monoliths, using the co-precipitation route within a warmed supersaturated solution of oxalic acid. The appropriate stoichiometry was determined from the mixtures of precisely titrated aqueous solutions of cations chlorides (SrCl2, BaCl2, and TiCl4). The reason of this process was to apply low sintering temperature in production of BST samples with ultra-fine powders. These powders primarily calcined at (850°C) for (5 hr) were used to elaborate ceramics after pellets sintering at (1200°C) during (8 hrs). Indeed, XRD patterns were confirmed that the samples are a pure phase and a perovskite cubic structural type at (x = 0, 0.5, 0.6). Whereas, (x = 0.7, 0.8, 0.9, 1) showed a tetragonal phase. There is agreement between the FTIR and XRD analysis, by the relation of the wave vector (K) and lattice constant. It was deduced a stimulated relation between (x) and (K). The results of TEM, they were clear that the lowest particle sizes investigated of BST powders nearly (36 - 50 nm).展开更多
The compound NdAlSi was studied using X-ray powder diffraction technique and refined by the Rietveld method. The compound NdAlSi has tetragonal α-ThSiE-type structure, space group I41/amd (No. 141), Z = 4, and the ...The compound NdAlSi was studied using X-ray powder diffraction technique and refined by the Rietveld method. The compound NdAlSi has tetragonal α-ThSiE-type structure, space group I41/amd (No. 141), Z = 4, and the lattice parameters a = 0.41991(1) nm, c = 1.44916(3) nm. The Smith and Snyder figure of merit FN is F30= 103.1(36). The R-factors of Rietveld refinement are Rp= 0.113 and Rwp= 0.148, respectively. The X-ray powder diffraction data is presented in this article.展开更多
A new laser crystal Nd0.05La0.95Sc3(BO3)4 up to 50mm(38mm(7 mm was grown by top-seeded solution growth method from a Li6B4O9 flux. The grown crystal was characterized by X-ray powder diffraction. Its crystal structure...A new laser crystal Nd0.05La0.95Sc3(BO3)4 up to 50mm(38mm(7 mm was grown by top-seeded solution growth method from a Li6B4O9 flux. The grown crystal was characterized by X-ray powder diffraction. Its crystal structure is monoclinic with space group Cc and the unit cell dimensions: a=12.066(5), b=9.864(2), c=7.740(3) ?,β= 105.48(5)(, V=887.8(6)?3, Z=4, Dc=3.81g/cm3, which belongs to low-temperature phase. The optical absorption of the crystal shows that NLSB has a strong absorption band at 807.7 nm, which is suitable for laser-diode pumping.展开更多
The frontier orbital energies of montmorillonite molecule and[Me(H_(2)O)_(6)]^(2+)(Me=Cu^(2+),Zn^(2+),Co^(2+)and Ni^(2+))were calculated by INDO method.Results showed that the chemical interaction between montmorillon...The frontier orbital energies of montmorillonite molecule and[Me(H_(2)O)_(6)]^(2+)(Me=Cu^(2+),Zn^(2+),Co^(2+)and Ni^(2+))were calculated by INDO method.Results showed that the chemical interaction between montmorillonite molecule and[Cu(H_(2)O)_(6)]^(2+)or[Zn(H_(2)O)_(6)]^(2+)was possible.The experimental results of powder X-ray diffraction and isothermal adsorption supported the above-mentioned calculation results.展开更多
基金This work was supported by the National Natural Science Foundation of China.
文摘A uranyl compound, K_4UO_2(CO_3)_3 has been characterized by powder X-ray diffraction method. M. W.=606.46, monoclinic, C2/c (No. 15), a=1.0240(7), b=0.9198(4), c=1.2222(12)nm, β=95.12(4)°,V=1.1466(5)nm^3, Z=4, D_m=3.468g/cm^3, D_c=3.513g/cm~, λ(Cu Kα_1)=O.1540598nm, T=298K. The structure was solved by heavy atom method and Fourier synthesis, and refined by full- matrix least-squares method to R=0.1185 for 275 reflections. The uranium (Ⅵ) atom is in an eight-coordinate distorted hexagonal-bipyramidal environment with creasy fan shape. The linear uranyl group approaches to perpendicular to the equatorial plane in which three carbonate groups are chelated. U(Ⅵ) has two linear oxygen atoms closer to it (U-O=0.1767 (5) nm) than six other neighbours (U-O ranging from 0.2516 to 0.2568nm). The distances between carbon atoms and uncoordinated oxygen atoms are 0.122 (1) and 0.123(1) nm, which are distinctly different from those between carbon and coordinated oxygen atoms (mean 0.134(6) nm). This fact reveals the non-eq- uivalence of one oxygen atom to the other two in each carbonate. In K_4UO_2(CO_3)_3, the O-O dis- tance for the adjacent carbonate groups is 0.2794(4)nm approaching to the sum of Van der Waals radii of two oxygen atoms. The K-O distances vary between 0.2667 and 0.3131nm, and each anion is immediately surrounded by six potassium ions, only four of which can be considered to belong to the same structural formula unit, and they are symmetrically located above and below the equatorial plane.
文摘Homogeneous BaTiO3 fine powder has been synthesized at (80°C) by using three different chemical methods using the roots TiCl4, BaCl2 and NaOH or Oxalic acid. The resultant powders were characterized using x-ray diffraction (XRD) to estimate the crystal structure, lattice parameters and the crystallite size to investigate the favor method in producing BaTiO3 fine powder. The criteria that was dependent on considering the favor method that was given better results of XRD and demand a least time in preparation which tend to consume a lowest energy.
文摘Various compositions of the system BaxSr1-xTiO3 (BST) have been elaborated both as fine powders and ceramic monoliths, using the co-precipitation route within a warmed supersaturated solution of oxalic acid. The appropriate stoichiometry was determined from the mixtures of precisely titrated aqueous solutions of cations chlorides (SrCl2, BaCl2, and TiCl4). The reason of this process was to apply low sintering temperature in production of BST samples with ultra-fine powders. These powders primarily calcined at (850°C) for (5 hr) were used to elaborate ceramics after pellets sintering at (1200°C) during (8 hrs). Indeed, XRD patterns were confirmed that the samples are a pure phase and a perovskite cubic structural type at (x = 0, 0.5, 0.6). Whereas, (x = 0.7, 0.8, 0.9, 1) showed a tetragonal phase. There is agreement between the FTIR and XRD analysis, by the relation of the wave vector (K) and lattice constant. It was deduced a stimulated relation between (x) and (K). The results of TEM, they were clear that the lowest particle sizes investigated of BST powders nearly (36 - 50 nm).
基金This project was financially supported by the Doctoral Start-up Foundation of Guangxi University.
文摘The compound NdAlSi was studied using X-ray powder diffraction technique and refined by the Rietveld method. The compound NdAlSi has tetragonal α-ThSiE-type structure, space group I41/amd (No. 141), Z = 4, and the lattice parameters a = 0.41991(1) nm, c = 1.44916(3) nm. The Smith and Snyder figure of merit FN is F30= 103.1(36). The R-factors of Rietveld refinement are Rp= 0.113 and Rwp= 0.148, respectively. The X-ray powder diffraction data is presented in this article.
基金the Natural Foundation of Fujian Province, International Collaborative Project of Fujian Science and Technology Committee.
文摘A new laser crystal Nd0.05La0.95Sc3(BO3)4 up to 50mm(38mm(7 mm was grown by top-seeded solution growth method from a Li6B4O9 flux. The grown crystal was characterized by X-ray powder diffraction. Its crystal structure is monoclinic with space group Cc and the unit cell dimensions: a=12.066(5), b=9.864(2), c=7.740(3) ?,β= 105.48(5)(, V=887.8(6)?3, Z=4, Dc=3.81g/cm3, which belongs to low-temperature phase. The optical absorption of the crystal shows that NLSB has a strong absorption band at 807.7 nm, which is suitable for laser-diode pumping.
文摘The frontier orbital energies of montmorillonite molecule and[Me(H_(2)O)_(6)]^(2+)(Me=Cu^(2+),Zn^(2+),Co^(2+)and Ni^(2+))were calculated by INDO method.Results showed that the chemical interaction between montmorillonite molecule and[Cu(H_(2)O)_(6)]^(2+)or[Zn(H_(2)O)_(6)]^(2+)was possible.The experimental results of powder X-ray diffraction and isothermal adsorption supported the above-mentioned calculation results.