Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures t...Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures that meet the increased requirements are a priority in our time. X-ray examinations are of particular importance for the orthopedic and traumatological clinics, where they provide information about presence of a fracture in the patient’s body, about the concrete operation performed or about the effect of a suitable treatment. Along with their benefits X-rays have also a harmful effect. This requires special care to protect from this radiation. In this direction, research is constantly being done to improve the quality of radiation protection. Park MR, Lee KM and co-authors, compare the dose load obtained using C-arm and O-arm X-ray systems (which have the capability of combined 2D fluoroscopy and 3D computed tomography imaging). In their study, an orthopedic surgical procedure using C-arm and O-arm systems in 2D fluoroscopy modes was simulated. The radiation doses to susceptible organs of the operators were investigated. He results obtained show that the O-arm system delivered higher doses to the sensitive organs of the operator in all configurations [1]. The article of Stephen Balte briefly reviews the available technologies for measuring or estimation of patient skin dose in the interventional fluoroscopic environment, created by various X-ray equipment including C-arm systems. Given that many patients require multiple procedures, this documentation also aids in the planning of follow up visits [2]. Chong Hing Wong, Yoshihisa Kotani and co-authors evaluate the radiation exposures (RE) to the patient and surgeon during minimally invasive lumbar spine surgery with instrumentation using C-arm image intensifier or O-arm intraoperative CT. The results they get are in favor of the O-arm system [3]. The article “Virtual fluoroscopy for intraoperative C-arm positioning and radiation dose reduction” discusses positioning of an intraoperative C-arm system to achieve clear visualization of a particular anatomical feature by a system for virtual fluoroscopy (called FluoroSim) that could dramatically reduce time and received dose during the procedures. FluoroSim was found to reduce the radiation exposure required for C-arm positioning without reducing positioning time or accuracy, providing a potentially valuable tool to assist surgeons [4]. In our study, we performed practical measurements to show how the patient can be treated by applying most effective radiation protection when using a mobile C-arm X-ray system. For the study, we used exposure upon a phantom placed on the patient’s table. For an X-ray shielding, we used a protective apron with a lead equivalent of 1 mm, placed in two layers on the phantom. In each subsequent series of exposures, the protective apron was placed on the phantom, in a different position relative to the X-ray beam. The general conclusion of our study is that in order to obtain maximum protection from scattered radiation when using C-arm X-ray systems, the patient must be protected by a shielding with a suitable lead equivalent for the procedure performed which must be placed between patient’s body and X-ray tube, perpendicular to the X-ray beam pointed toward the region of interest.展开更多
It should be transformed from the extensive development in the past to the new normal form of environmentally friendly pattern of “save energy, lower consumption and less pollution” in the Textile and Garment. For t...It should be transformed from the extensive development in the past to the new normal form of environmentally friendly pattern of “save energy, lower consumption and less pollution” in the Textile and Garment. For the pollution problem in China’s textile and garment industry, the author particularly analyzes the pollution of the textile and garment industry mainly occurred in the process of textile and clothing production and sales in this article. Finally, the author puts forward detail measure to control the pollution from the two aspects and advocates the concept of low-carbon environmental protection and green lifestyle. The low-carbon environmental protection has become a phenomenon in Textile and Apparel.展开更多
The aim of this study was to determine the attenuation of gamma and X-rays with different energies caused by passage through different materials.To this end,different materials with a range of atomic numbers were chos...The aim of this study was to determine the attenuation of gamma and X-rays with different energies caused by passage through different materials.To this end,different materials with a range of atomic numbers were chosen to measure gamma and X-ray attenuation coefficients and to explore the mechanisms of interaction of gamma and X-rays with matter of various kinds.It is shown that the attenuation coefficients first decrease and then increase with increase in the radiation(photon)energy.The attenuation of gamma and X-rays passing through materials with high atomic number is greater than that in materials with low atomic number.The attenuation minimum is related to the atomic number of the irradiated materials.The larger the atomic number is,the lower the energy corresponding to attenuation minimum is.Photoelectric and Compton effects are the main processes when gamma rays pass through individual materials with high and low atomic numbers,respectively.Therefore,for radiotherapy and radiation protection,different methods should be considered and selected for the use of gamma and X-rays of different energies for use in different materials.展开更多
Objective: Evaluate the level of compliance with radiation protection rules in the medical imaging department of the University Hospital Center (CHU) of Kati. Methodology: This was a cross-sectional and descriptive st...Objective: Evaluate the level of compliance with radiation protection rules in the medical imaging department of the University Hospital Center (CHU) of Kati. Methodology: This was a cross-sectional and descriptive study carried out in the medical imaging department of Pr Bocar Sidy Sall (BSS) Hospital of Kati. A questionnaire was developed and sent to the staff of the medical imaging department. The assessment focused on the radiation protection of personnel, radiation protection measures for patients, the delimitation and signage of zoning as well as the application of radiation protection principles. Results: Twenty-one people participated in the study, 90% of whom were men. The 30 - 39 age group was predominant with 61.90%. 33.33% of the staff knew the principles of radiation protection;86% of our sample knew the basic rules of radiation protection. The majority of the staff in the imaging department (61.90%) had a perfect knowledge of protective equipment. For 76% of our workforce, the limits of the radiation doses received are regulated in Mali. 76% of those surveyed have not taken any additional training in radiation protection. The doors are closed during the X-ray examination for 76.19% of the respondents and 95% of the staff put themselves behind the sealed screen during the examination. For 81% of the respondents, the design of the premises met radiation protection standards. 62% of practitioners have a dosimeter and 80% of them wear it during their shift. For 62% of our sample, the change of the dosimeter is quarterly. The systematic request for DDR (date of last menstrual period) in women and the adaptation of the delivered dose to the patient’s morphology was only carried out by 65% of practitioners. The majority of staff (81%) did not benefit from medical surveillance, while for 55% of respondents the level of radiation protection in the establishment was average. Conclusion: This study enabled us to highlight the shortcomings in terms of radiation protection within the imaging department of the CHU Kati.展开更多
BACKGROUND:Few contemporary studies have assessed physicians’knowledge of radiation exposure associated with common imaging studies,especially in trauma care.The purpose of this study was to assess the knowledge of p...BACKGROUND:Few contemporary studies have assessed physicians’knowledge of radiation exposure associated with common imaging studies,especially in trauma care.The purpose of this study was to assess the knowledge of physicians involved in caring for trauma patients regarding the effective radiation doses of musculoskeletal(MSK)imaging studies routinely utilized in the trauma setting.METHODS:An electronic survey was distributed to United States orthopaedic surgery,general surgery,and emergency medicine(EM)residency programs.Participants were asked to estimate the radiation dose for common imaging modalities of the pelvis,lumbar spine,and lower extremity,in terms of chest X-ray(CXR)equivalents.Physician estimates were compared to the true effective radiation doses.Additionally,participants were asked to report the frequency of discussing radiation risk with patients.RESULTS:A total of 218 physicians completed the survey;102(46.8%)were EM physicians,88(40.4%)wereorthopaedicsurgeons,and28(12.8%)weregeneralsurgeons.Physicians underestimated the effective radiation doses of nearly all imaging modalities,most notably for pelvic computed tomaography(CT)(median 50 CXR estimation vs.162 CXR actual)and lumbar CT(median 50 CXR estimation vs.638 CXR actual).There was no difference between physician specialties regarding estimation accuracy(P=0.133).Physicians who regularly discussed radiation risks with patients more accurately estimated radiation exposure(P=0.007).CONCLUSION:The knowledge among orthopaedic and general surgeons and EM physicians regarding the radiation exposure associated with common MSK trauma imaging is lacking.Further investigation with larger scale studies is warranted,and additional education in this area may improve care.展开更多
防刺服装属于个体装甲中的一类,随着近年来一些恐怖事件的发生,各类个体防护用品的开发和研究越来越受到人们的关注和重视。文章主要介绍了国际上常用的防刺服装的测试标准NIJ standard-0115.00和PSDB stab resistancestandard for body...防刺服装属于个体装甲中的一类,随着近年来一些恐怖事件的发生,各类个体防护用品的开发和研究越来越受到人们的关注和重视。文章主要介绍了国际上常用的防刺服装的测试标准NIJ standard-0115.00和PSDB stab resistancestandard for body armour,并对其进行了比较。同时介绍了防刺服开发中应用的主要高性能纤维材料以及增强防刺性能的主要技术手段。展开更多
文摘Modern medicine is unthinkable without X-rays. Accurate diagnosis, leading to effective treatment, is largely based on precise X-ray examinations. The creation of new, modern equipment and various medical procedures that meet the increased requirements are a priority in our time. X-ray examinations are of particular importance for the orthopedic and traumatological clinics, where they provide information about presence of a fracture in the patient’s body, about the concrete operation performed or about the effect of a suitable treatment. Along with their benefits X-rays have also a harmful effect. This requires special care to protect from this radiation. In this direction, research is constantly being done to improve the quality of radiation protection. Park MR, Lee KM and co-authors, compare the dose load obtained using C-arm and O-arm X-ray systems (which have the capability of combined 2D fluoroscopy and 3D computed tomography imaging). In their study, an orthopedic surgical procedure using C-arm and O-arm systems in 2D fluoroscopy modes was simulated. The radiation doses to susceptible organs of the operators were investigated. He results obtained show that the O-arm system delivered higher doses to the sensitive organs of the operator in all configurations [1]. The article of Stephen Balte briefly reviews the available technologies for measuring or estimation of patient skin dose in the interventional fluoroscopic environment, created by various X-ray equipment including C-arm systems. Given that many patients require multiple procedures, this documentation also aids in the planning of follow up visits [2]. Chong Hing Wong, Yoshihisa Kotani and co-authors evaluate the radiation exposures (RE) to the patient and surgeon during minimally invasive lumbar spine surgery with instrumentation using C-arm image intensifier or O-arm intraoperative CT. The results they get are in favor of the O-arm system [3]. The article “Virtual fluoroscopy for intraoperative C-arm positioning and radiation dose reduction” discusses positioning of an intraoperative C-arm system to achieve clear visualization of a particular anatomical feature by a system for virtual fluoroscopy (called FluoroSim) that could dramatically reduce time and received dose during the procedures. FluoroSim was found to reduce the radiation exposure required for C-arm positioning without reducing positioning time or accuracy, providing a potentially valuable tool to assist surgeons [4]. In our study, we performed practical measurements to show how the patient can be treated by applying most effective radiation protection when using a mobile C-arm X-ray system. For the study, we used exposure upon a phantom placed on the patient’s table. For an X-ray shielding, we used a protective apron with a lead equivalent of 1 mm, placed in two layers on the phantom. In each subsequent series of exposures, the protective apron was placed on the phantom, in a different position relative to the X-ray beam. The general conclusion of our study is that in order to obtain maximum protection from scattered radiation when using C-arm X-ray systems, the patient must be protected by a shielding with a suitable lead equivalent for the procedure performed which must be placed between patient’s body and X-ray tube, perpendicular to the X-ray beam pointed toward the region of interest.
文摘It should be transformed from the extensive development in the past to the new normal form of environmentally friendly pattern of “save energy, lower consumption and less pollution” in the Textile and Garment. For the pollution problem in China’s textile and garment industry, the author particularly analyzes the pollution of the textile and garment industry mainly occurred in the process of textile and clothing production and sales in this article. Finally, the author puts forward detail measure to control the pollution from the two aspects and advocates the concept of low-carbon environmental protection and green lifestyle. The low-carbon environmental protection has become a phenomenon in Textile and Apparel.
基金supported by the National Natural Science Foundation of China(Nos.11475013,11975040 and U1832130)
文摘The aim of this study was to determine the attenuation of gamma and X-rays with different energies caused by passage through different materials.To this end,different materials with a range of atomic numbers were chosen to measure gamma and X-ray attenuation coefficients and to explore the mechanisms of interaction of gamma and X-rays with matter of various kinds.It is shown that the attenuation coefficients first decrease and then increase with increase in the radiation(photon)energy.The attenuation of gamma and X-rays passing through materials with high atomic number is greater than that in materials with low atomic number.The attenuation minimum is related to the atomic number of the irradiated materials.The larger the atomic number is,the lower the energy corresponding to attenuation minimum is.Photoelectric and Compton effects are the main processes when gamma rays pass through individual materials with high and low atomic numbers,respectively.Therefore,for radiotherapy and radiation protection,different methods should be considered and selected for the use of gamma and X-rays of different energies for use in different materials.
文摘Objective: Evaluate the level of compliance with radiation protection rules in the medical imaging department of the University Hospital Center (CHU) of Kati. Methodology: This was a cross-sectional and descriptive study carried out in the medical imaging department of Pr Bocar Sidy Sall (BSS) Hospital of Kati. A questionnaire was developed and sent to the staff of the medical imaging department. The assessment focused on the radiation protection of personnel, radiation protection measures for patients, the delimitation and signage of zoning as well as the application of radiation protection principles. Results: Twenty-one people participated in the study, 90% of whom were men. The 30 - 39 age group was predominant with 61.90%. 33.33% of the staff knew the principles of radiation protection;86% of our sample knew the basic rules of radiation protection. The majority of the staff in the imaging department (61.90%) had a perfect knowledge of protective equipment. For 76% of our workforce, the limits of the radiation doses received are regulated in Mali. 76% of those surveyed have not taken any additional training in radiation protection. The doors are closed during the X-ray examination for 76.19% of the respondents and 95% of the staff put themselves behind the sealed screen during the examination. For 81% of the respondents, the design of the premises met radiation protection standards. 62% of practitioners have a dosimeter and 80% of them wear it during their shift. For 62% of our sample, the change of the dosimeter is quarterly. The systematic request for DDR (date of last menstrual period) in women and the adaptation of the delivered dose to the patient’s morphology was only carried out by 65% of practitioners. The majority of staff (81%) did not benefit from medical surveillance, while for 55% of respondents the level of radiation protection in the establishment was average. Conclusion: This study enabled us to highlight the shortcomings in terms of radiation protection within the imaging department of the CHU Kati.
文摘BACKGROUND:Few contemporary studies have assessed physicians’knowledge of radiation exposure associated with common imaging studies,especially in trauma care.The purpose of this study was to assess the knowledge of physicians involved in caring for trauma patients regarding the effective radiation doses of musculoskeletal(MSK)imaging studies routinely utilized in the trauma setting.METHODS:An electronic survey was distributed to United States orthopaedic surgery,general surgery,and emergency medicine(EM)residency programs.Participants were asked to estimate the radiation dose for common imaging modalities of the pelvis,lumbar spine,and lower extremity,in terms of chest X-ray(CXR)equivalents.Physician estimates were compared to the true effective radiation doses.Additionally,participants were asked to report the frequency of discussing radiation risk with patients.RESULTS:A total of 218 physicians completed the survey;102(46.8%)were EM physicians,88(40.4%)wereorthopaedicsurgeons,and28(12.8%)weregeneralsurgeons.Physicians underestimated the effective radiation doses of nearly all imaging modalities,most notably for pelvic computed tomaography(CT)(median 50 CXR estimation vs.162 CXR actual)and lumbar CT(median 50 CXR estimation vs.638 CXR actual).There was no difference between physician specialties regarding estimation accuracy(P=0.133).Physicians who regularly discussed radiation risks with patients more accurately estimated radiation exposure(P=0.007).CONCLUSION:The knowledge among orthopaedic and general surgeons and EM physicians regarding the radiation exposure associated with common MSK trauma imaging is lacking.Further investigation with larger scale studies is warranted,and additional education in this area may improve care.
文摘防刺服装属于个体装甲中的一类,随着近年来一些恐怖事件的发生,各类个体防护用品的开发和研究越来越受到人们的关注和重视。文章主要介绍了国际上常用的防刺服装的测试标准NIJ standard-0115.00和PSDB stab resistancestandard for body armour,并对其进行了比较。同时介绍了防刺服开发中应用的主要高性能纤维材料以及增强防刺性能的主要技术手段。