The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X...The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.展开更多
The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the P...The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.展开更多
In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate ...In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter.展开更多
The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and p...The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and predicted by the pulse timing models. With the detected pulse phase, the satellite position with respect to the Earth center can be calculated along the line-of-sight to the pulsar. Using three pulsars, the satellite position in the in- ertial frame can be resolved. The extended Kalman filter (EKF) algorithm is designed to incorporate the range measurements with the satellite dynamics. Simulation verification shows that the proposed algorithm can accu- rately determine the satellite orbit, with the position error less than 100 m. Furthermore, the factors influencing the navigation performance are also discussed.展开更多
Pulsars are very stable spinning stars, which have the potential to application in the work of time-keeping and autonomous navigation in deep space. For time application, an individual pulsar can be regarded as a cloc...Pulsars are very stable spinning stars, which have the potential to application in the work of time-keeping and autonomous navigation in deep space. For time application, an individual pulsar can be regarded as a clock. The accuracy and stability of a pulsar clock are mainly determined by various timing noises and the measurement errors;however, they would be affected by the concrete observational strategy.Taking four millisecond pulsars from the first data released by International Pulsar Timing Array(IPTA) as an example, we investigated the influences of different observational strategies on the properties of pulsar clocks by removing some data in various ways. We find that the long-term stabilities of pulsar clocks are nearly not affected by increasing the observational cadence with a fixed time span. It is also found that the capabilities of prediction by pulsar clocks are also hardly affected by different observational strategies,which is reflected by both the stable weighted root-mean-square(wrms) and the stability of the resulting pre-fit timing residuals, unless the data span is too short or the data period is too far from the start of prediction.展开更多
In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion ...In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion flow is magnetically channeled to the stellar surface.Here,we have developed the fundamental equations for an accretion disk around accreting millisecond X-ray pulsars in the presence of a dynamo generated magnetic field in the inner part of the disk.We have also formulated the numerical method for the structure equations in the inner region of the disk and the highest accretion rate is enough to form the inner region of the disk,which is overpowered by radiation pressure and electron scattering.Finally,we have examined our results with the effects of dynamo magnetic fields on accreting millisecond X-ray pulsars.展开更多
In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that di...In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.展开更多
We study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a Suzaku observation taken on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray...We study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a Suzaku observation taken on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s, which suggest that the pulsar is spinning-up. The pulse profiles were found to be peculiar, e.g. unlike those obtained from the earlier Suzaku observation acquired on 2007 May 14. A single-peaked narrow profile at soft X-rays (0.5-10 keV range) changed to a double-peaked broad profile in the 12-55 keV energy range and again reverted back to a smooth single-peaked profile at hard X-rays (55-70 keV range). The 1.0-100.0 keV broadband spectrum of the pulsar was found to be well described by three continuum models described as (i) a partial covering high energy cut-off power-law model, (ii) a partially absorbed power-law with high- energy exponential rolloff and (iii) a partial covering Negative and Positive power law with EXponential (NPEX) continuum model. Unlike the earlier Suzaku observation during which several low energy emission lines were detected, a weak and narrow Iron Ka emission line at 6.4 keV was only present in the pulsar spectrum during the 2012 May outburst. Non-detection of any absorption like feature in the 1-100 keV energy range supports the claim of the absence of the cyclotron resonance scattering feature in EXO 2030+375 from the earlier Suzaku observation. Pulse-phase resolved spectroscopy revealed the presence of additional dense matter causing the absence of a second peak from the soft X-ray pulse profiles. The details of the results are described in the paper.展开更多
In this paper, the propagation of x-ray bursts in the magnetoplasma of pulsar magnetosphere is discussed. The electromagnetic interaction between x-ray bursts and magnetoplasma is described as some geometry. The elect...In this paper, the propagation of x-ray bursts in the magnetoplasma of pulsar magnetosphere is discussed. The electromagnetic interaction between x-ray bursts and magnetoplasma is described as some geometry. The electromagnetic effects of surface superstrong magnetic field and dynamic effects of outflowing magnetoplasma of pulsars are treated as an optical metric. The Gordon metric is introduced to represent the gravitational metric and optical metric. So the propagation of x-ray bursts in magnetoplasma of pulsars can be described as x-ray bursts transmitting in an effective space characterized by Gordon metric. The modification of gravitational redshift, attributed to the flowing magnetoplasma of pulsars, is obtained and it is shown that the modification is of redshift and can reach the same magnitude as the gravitational redshift for ordinary pulsars.展开更多
The detection of gravitational waves(GWs)by pulsar timing arrays(PTAs)is not only a very important supplementation of the verification of general relativity but also a new window to study the evolution of supermassive...The detection of gravitational waves(GWs)by pulsar timing arrays(PTAs)is not only a very important supplementation of the verification of general relativity but also a new window to study the evolution of supermassive binary black holes and the early universe.However,so far the detection sensitivity of PTAs is not good enough to catch signals of GWs due to the disturbance of various noises.In this paper we explore the influences of the correlated noises caused by the reference clock errors and solar system ephemeris errors in pulsar timing on the detection of stochastic gravitational waves background(GWB).We demonstrate the power-law integrated sensitivity curves of GWB detection under the impacts from these correlated noises.From the simulated data,we find that the influence of different reference timescale is non-negligible,and the influence is even quite huge if one uses a very old version of solar system ephemeris.However,the impact from these correlated noises on the sensitivity curve is very limited for the real observational data released by international pulsar timing arrays(IPTA).We also calculate the signalto-noise ratios based on the theoretical GW amplitude permitted by observations.Moreover,we study how the detection sensitivity increases with more pulsar number and longer observation.展开更多
Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10^33 - 10^37 erg s^-1 and a photon index of 1.6-2.1 in...Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10^33 - 10^37 erg s^-1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of Lx ∝ Lsd^1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of Lx ∝ Lsd^1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the Lx - Lsd reltions:Lx ∝Lsd^1.31 and Lx∝Lsd^1.5 More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.展开更多
We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and th...We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate . The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing . A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.展开更多
Prior to achieving high precision navigation of a spacecraft using X-ray observations, a pulsar rotation model must be built and analysis of the precise posi- tion of the Earth should be performed using ground pulsar ...Prior to achieving high precision navigation of a spacecraft using X-ray observations, a pulsar rotation model must be built and analysis of the precise posi- tion of the Earth should be performed using ground pulsar timing observations. We can simulate time-of-arrival ground observation data close to actual observed values before using pulsar timing observation data. Considering the correlation between the Earth's position and its short arc section of an orbit, we use polynomial regression to build the correlation. Regression coefficients can be calculated using the least square method, and a coordinate component series can also be obtained; that is, we can calcu- late Earth's position in the Barycentric Celestial Reference System according to pulse arrival time data and a precise pulsar rotation model. In order to set appropriate param- eters before the actual timing observations for Earth positioning, we can calculate the influence of the spatial distribution of pulsars on errors in the positioning result and the influence of error source variation on positioning by simulation. It is significant that the threshold values of the observation and systematic errors can be established before an actual observation occurs; namely, we can determine the observation mode with small errors and reject the observed data with big errors, thus improving the positioning result.展开更多
The grazing incidence focusing X-ray pulsar telescope(iFXPT), as the main payload of the X-ray Pulsar Navigation Test Satellite(XPNAV-1), will have great significance on China's space scientific exploration and X-...The grazing incidence focusing X-ray pulsar telescope(iFXPT), as the main payload of the X-ray Pulsar Navigation Test Satellite(XPNAV-1), will have great significance on China's space scientific exploration and X-ray pulsar navigation. With PSR B0531+21(Crab Pulsar) as the observation target, the pulsar profile has been recovered based on the data obtained by iFXPT, realizing the main objective of "observing" PSR B0531+21 for the first time in China. This payload mainly consists of the Wolter-I X-ray optics, silicon drift detector, magnetic deflector, electronics, high-energy particle shield and high-stability structures. Currently, the iFXPT, with its good in-orbit performance, has obtained a considerable observation data. The effective area, sensitivity and energy response have been calibrated both on ground and in-orbit, demonstrating a high degree of consistency. Meanwhile, the in-orbit observation data and information for pulsar navigation has also been analyzed simultaneously. As a result, the feasibility of the exploration scheme and the performance of the telescope have been fully validated.展开更多
Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of e...Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.展开更多
We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approxima...We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10-6-10-5 M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.展开更多
We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs, i...We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs, i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X- ray pulsations at - 18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to -10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to -70 keV. The 1-110 keV broad-band spectroscopy of both observations revealed that the best-fit model was comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission lines. Both the lines were identified as emission from neutral and He-like iron atoms. To fit the spectra, we included the previously reported cyclotron absorption line at 12.2 keV. From the spin-up rate, the magnetic field of the pulsar was estimated to be -1.2 x 10^12 G and found to be comparable to that obtained from the detection of the cyclotron absorption feature. Pulse-phase resolved spectroscopy revealed the pulsating nature of the soft X-ray excess component in phase with the continuum flux. This confirms that the accretion column and/or accretion stream are the most probable regions of the soft X-ray excess emission in KS1947+300. The presence of the pulsating soft X-ray excess in phase with continuum emission may be the possible reason for not observing the dip at soft X-rays.展开更多
So far quite a few ultraluminous X-ray(ULX) pulsars have been discovered.In this work,we construct a super-Eddington,magnetic accretion disk model to estimate the dipole magnetic field of eight ULX pulsars based on th...So far quite a few ultraluminous X-ray(ULX) pulsars have been discovered.In this work,we construct a super-Eddington,magnetic accretion disk model to estimate the dipole magnetic field of eight ULX pulsars based on their observed spin-up variations and luminosities.We obtain two branches of dipole magnetic field solutions.They are distributed in the range of B-(0.156-64.5) × 10^(10) G and-(0.275-79.0) × 10^(13) G corresponding to the low-and high-B solutions respectively.The low magnetic field solutions correspond to the state that the neutron stars are far away from the spin equilibrium,and the high magnetic field solutions are close to the spin equilibrium.The ultra-strong magnetic fields derived in Be-type ULX pulsars imply that the accretion mode in Be-type ULX pulsars could be more complicated than in the persistent ULX pulsars and may not be accounted for by the magnetized accretion disk model.We suggest that the transition between the accretor and the propeller regimes may be used to distinguish between the low-and high-B magnetic field solutions in addition to the detection of the cyclotron resonance scattering features.展开更多
基金This work was supported by the National Key R&D Program of China(No.2020YFA0405802)the Shanghai Large Scientific Facilities Center.
文摘The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.
基金supported by the National Natural Science Foundation of China (61172138)the Open Fund of Key Laboratory of Precision Navigation and Technology,National Time Service Center,CAS (2012PNTT02)
文摘The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.
文摘In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter.
文摘The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and predicted by the pulse timing models. With the detected pulse phase, the satellite position with respect to the Earth center can be calculated along the line-of-sight to the pulsar. Using three pulsars, the satellite position in the in- ertial frame can be resolved. The extended Kalman filter (EKF) algorithm is designed to incorporate the range measurements with the satellite dynamics. Simulation verification shows that the proposed algorithm can accu- rately determine the satellite orbit, with the position error less than 100 m. Furthermore, the factors influencing the navigation performance are also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1831130 and U1531112)the program of Youth Innovation Promotion Association CAS(2017450)。
文摘Pulsars are very stable spinning stars, which have the potential to application in the work of time-keeping and autonomous navigation in deep space. For time application, an individual pulsar can be regarded as a clock. The accuracy and stability of a pulsar clock are mainly determined by various timing noises and the measurement errors;however, they would be affected by the concrete observational strategy.Taking four millisecond pulsars from the first data released by International Pulsar Timing Array(IPTA) as an example, we investigated the influences of different observational strategies on the properties of pulsar clocks by removing some data in various ways. We find that the long-term stabilities of pulsar clocks are nearly not affected by increasing the observational cadence with a fixed time span. It is also found that the capabilities of prediction by pulsar clocks are also hardly affected by different observational strategies,which is reflected by both the stable weighted root-mean-square(wrms) and the stability of the resulting pre-fit timing residuals, unless the data span is too short or the data period is too far from the start of prediction.
基金the Ethiopian Space Science and Technology InstituteEntoto Observatory and Research CenterAstronomy and Astrophysics Research and Development Department for supporting this research。
文摘In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion flow is magnetically channeled to the stellar surface.Here,we have developed the fundamental equations for an accretion disk around accreting millisecond X-ray pulsars in the presence of a dynamo generated magnetic field in the inner part of the disk.We have also formulated the numerical method for the structure equations in the inner region of the disk and the highest accretion rate is enough to form the inner region of the disk,which is overpowered by radiation pressure and electron scattering.Finally,we have examined our results with the effects of dynamo magnetic fields on accreting millisecond X-ray pulsars.
文摘In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.
基金the Physical Research Laboratory is funded by the Department of Space,the Government of Indiamade use of data obtained through the HEASARC Online Service,provided by NASA/GSFC,in support of NASA High Energy Astrophysics Programs
文摘We study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a Suzaku observation taken on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s, which suggest that the pulsar is spinning-up. The pulse profiles were found to be peculiar, e.g. unlike those obtained from the earlier Suzaku observation acquired on 2007 May 14. A single-peaked narrow profile at soft X-rays (0.5-10 keV range) changed to a double-peaked broad profile in the 12-55 keV energy range and again reverted back to a smooth single-peaked profile at hard X-rays (55-70 keV range). The 1.0-100.0 keV broadband spectrum of the pulsar was found to be well described by three continuum models described as (i) a partial covering high energy cut-off power-law model, (ii) a partially absorbed power-law with high- energy exponential rolloff and (iii) a partial covering Negative and Positive power law with EXponential (NPEX) continuum model. Unlike the earlier Suzaku observation during which several low energy emission lines were detected, a weak and narrow Iron Ka emission line at 6.4 keV was only present in the pulsar spectrum during the 2012 May outburst. Non-detection of any absorption like feature in the 1-100 keV energy range supports the claim of the absence of the cyclotron resonance scattering feature in EXO 2030+375 from the earlier Suzaku observation. Pulse-phase resolved spectroscopy revealed the presence of additional dense matter causing the absence of a second peak from the soft X-ray pulse profiles. The details of the results are described in the paper.
基金Project supported by the National Natural Science Foundation of China (Grant No 10573012)the Shanghai Leading Academic Discipline Program, China (Grant No T0104)
文摘In this paper, the propagation of x-ray bursts in the magnetoplasma of pulsar magnetosphere is discussed. The electromagnetic interaction between x-ray bursts and magnetoplasma is described as some geometry. The electromagnetic effects of surface superstrong magnetic field and dynamic effects of outflowing magnetoplasma of pulsars are treated as an optical metric. The Gordon metric is introduced to represent the gravitational metric and optical metric. So the propagation of x-ray bursts in magnetoplasma of pulsars can be described as x-ray bursts transmitting in an effective space characterized by Gordon metric. The modification of gravitational redshift, attributed to the flowing magnetoplasma of pulsars, is obtained and it is shown that the modification is of redshift and can reach the same magnitude as the gravitational redshift for ordinary pulsars.
基金the National Natural Science Foundation of China(Grant Nos.U1831130 and U1531112)the program of Youth Innovation Promotion Association CAS(2017450)。
文摘The detection of gravitational waves(GWs)by pulsar timing arrays(PTAs)is not only a very important supplementation of the verification of general relativity but also a new window to study the evolution of supermassive binary black holes and the early universe.However,so far the detection sensitivity of PTAs is not good enough to catch signals of GWs due to the disturbance of various noises.In this paper we explore the influences of the correlated noises caused by the reference clock errors and solar system ephemeris errors in pulsar timing on the detection of stochastic gravitational waves background(GWB).We demonstrate the power-law integrated sensitivity curves of GWB detection under the impacts from these correlated noises.From the simulated data,we find that the influence of different reference timescale is non-negligible,and the influence is even quite huge if one uses a very old version of solar system ephemeris.However,the impact from these correlated noises on the sensitivity curve is very limited for the real observational data released by international pulsar timing arrays(IPTA).We also calculate the signalto-noise ratios based on the theoretical GW amplitude permitted by observations.Moreover,we study how the detection sensitivity increases with more pulsar number and longer observation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10803009 and 10833003)
文摘Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10^33 - 10^37 erg s^-1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of Lx ∝ Lsd^1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of Lx ∝ Lsd^1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the Lx - Lsd reltions:Lx ∝Lsd^1.31 and Lx∝Lsd^1.5 More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.
基金Supported by the National Natural Science Foundation of China
文摘We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate . The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing . A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10973030,10973032,11003039,10903032 and 10973049)the National Science Foundation of Shanghai,China (Grant No. 10ZR1435700)
文摘Prior to achieving high precision navigation of a spacecraft using X-ray observations, a pulsar rotation model must be built and analysis of the precise posi- tion of the Earth should be performed using ground pulsar timing observations. We can simulate time-of-arrival ground observation data close to actual observed values before using pulsar timing observation data. Considering the correlation between the Earth's position and its short arc section of an orbit, we use polynomial regression to build the correlation. Regression coefficients can be calculated using the least square method, and a coordinate component series can also be obtained; that is, we can calcu- late Earth's position in the Barycentric Celestial Reference System according to pulse arrival time data and a precise pulsar rotation model. In order to set appropriate param- eters before the actual timing observations for Earth positioning, we can calculate the influence of the spatial distribution of pulsars on errors in the positioning result and the influence of error source variation on positioning by simulation. It is significant that the threshold values of the observation and systematic errors can be established before an actual observation occurs; namely, we can determine the observation mode with small errors and reject the observed data with big errors, thus improving the positioning result.
文摘The grazing incidence focusing X-ray pulsar telescope(iFXPT), as the main payload of the X-ray Pulsar Navigation Test Satellite(XPNAV-1), will have great significance on China's space scientific exploration and X-ray pulsar navigation. With PSR B0531+21(Crab Pulsar) as the observation target, the pulsar profile has been recovered based on the data obtained by iFXPT, realizing the main objective of "observing" PSR B0531+21 for the first time in China. This payload mainly consists of the Wolter-I X-ray optics, silicon drift detector, magnetic deflector, electronics, high-energy particle shield and high-stability structures. Currently, the iFXPT, with its good in-orbit performance, has obtained a considerable observation data. The effective area, sensitivity and energy response have been calibrated both on ground and in-orbit, demonstrating a high degree of consistency. Meanwhile, the in-orbit observation data and information for pulsar navigation has also been analyzed simultaneously. As a result, the feasibility of the exploration scheme and the performance of the telescope have been fully validated.
基金Supported by the National Natural Science Foundation of China
文摘Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.
文摘We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10-6-10-5 M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.
基金funded by the Department of Space, Government of Indiaprovided by NASA/GSFC, in support of NASA High Energy Astrophysics Programs
文摘We present the results obtained from detailed timing and spectral studies of the Be/X-ray binary pulsar KS 1947+300 during its 2013 giant outburst. We used data from Suzaku observations of the pulsar at two epochs, i.e. on 2013 October 22 (close to the peak of the outburst) and 2013 November 22. X- ray pulsations at - 18.81 s were clearly detected in the light curves obtained from both observations. Pulse periods estimated during the outburst showed that the pulsar was spinning up. The pulse profile was found to be single-peaked up to -10 keV beyond which a sharp peak followed by a dip-like feature appeared at hard X-rays. The dip-like feature has been observed up to -70 keV. The 1-110 keV broad-band spectroscopy of both observations revealed that the best-fit model was comprised of a partially absorbed Negative and Positive power law with EXponential cutoff (NPEX) continuum model along with a blackbody component for the soft X-ray excess and two Gaussian functions at 6.4 and 6.7 keV for emission lines. Both the lines were identified as emission from neutral and He-like iron atoms. To fit the spectra, we included the previously reported cyclotron absorption line at 12.2 keV. From the spin-up rate, the magnetic field of the pulsar was estimated to be -1.2 x 10^12 G and found to be comparable to that obtained from the detection of the cyclotron absorption feature. Pulse-phase resolved spectroscopy revealed the pulsating nature of the soft X-ray excess component in phase with the continuum flux. This confirms that the accretion column and/or accretion stream are the most probable regions of the soft X-ray excess emission in KS1947+300. The presence of the pulsating soft X-ray excess in phase with continuum emission may be the possible reason for not observing the dip at soft X-rays.
基金supported by the National Key Research and Development Program of China (2016YFA0400803)the National Natural Science Foundation of China under grant Nos.11773015 and 10241301Project U1838201 supported by NSFC and CAS。
文摘So far quite a few ultraluminous X-ray(ULX) pulsars have been discovered.In this work,we construct a super-Eddington,magnetic accretion disk model to estimate the dipole magnetic field of eight ULX pulsars based on their observed spin-up variations and luminosities.We obtain two branches of dipole magnetic field solutions.They are distributed in the range of B-(0.156-64.5) × 10^(10) G and-(0.275-79.0) × 10^(13) G corresponding to the low-and high-B solutions respectively.The low magnetic field solutions correspond to the state that the neutron stars are far away from the spin equilibrium,and the high magnetic field solutions are close to the spin equilibrium.The ultra-strong magnetic fields derived in Be-type ULX pulsars imply that the accretion mode in Be-type ULX pulsars could be more complicated than in the persistent ULX pulsars and may not be accounted for by the magnetized accretion disk model.We suggest that the transition between the accretor and the propeller regimes may be used to distinguish between the low-and high-B magnetic field solutions in addition to the detection of the cyclotron resonance scattering features.