Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch...Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.展开更多
Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure...Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.展开更多
Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity...Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism.展开更多
The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for...The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling.展开更多
Effective prevention and management of osteoporosis would require suitable methods for population screenings and early diagnosis. Current clinicallyavailable diagnostic methods are mainly based on the use of either X-...Effective prevention and management of osteoporosis would require suitable methods for population screenings and early diagnosis. Current clinicallyavailable diagnostic methods are mainly based on the use of either X-rays or ultrasound(US). All X-ray based methods provide a measure of bone mineral density(BMD), but it has been demonstrated that other structural aspects of the bone are important in determining fracture risk, such as mechanical features and elastic properties, which cannot be assessed using densitometric techniques. Among the most commonly used techniques, dual X-ray absorptiometry(DXA) is considered the current 'gold standard' for osteoporosis diagnosis and fracture risk prediction. Unfortunately, as other X-ray based techniques, DXA has specific limitations(e.g., use of ionizing radiation, large size of the equipment, high costs, limited availability) that hinder its application for population screenings and primary care diagnosis. This has resulted in an increasing interest in developing reliable pre-screening tools for osteoporosis such as quantitative ultrasound(QUS) scanners, which do not involve ionizing radiation exposure and represent a cheaper solution exploiting portable and widely available devices. Furthermore, the usefulness of QUS techniques in fracture risk prediction has been proven and, with the last developments, they are also becoming a more and more reliable approach for assessing bone quality. However, the US assessment of osteoporosis is currently used only as a pre-screening tool, requiring a subsequent diagnosis confirmation by means of a DXA evaluation. Here we illustrate the state of art in the early diagnosis of this 'silent disease' and show up recent advances for its prevention and improved management through early diagnosis.展开更多
LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe...LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe PO4 olivine cathodes.Understanding the phase transition behaviors and kinetics of this material will help researchers to design and develop next generation cathodes for Li-ion batteries.In this study,we investigated non-equilibrium phase transition behaviors in a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material during charge–discharge processes by varying current rates(C-rates)using synchrotron in-situ X-ray techniques.These methods included wide angle X-ray scattering(in-situ WAXS)and X-ray absorption spectroscopy(in-situ XAS).The WAXS spectra indicate that the phase transition of LiMn_(0.5)Fe_(0.5)PO_(4) material at slow C-rates is induced by a two-phase reaction.In contrast,at a high C-rate(5 C),the formation of an intermediate phase upon discharge is clearly observed.Concurrently,the oxidation numbers of the redox reactions of Fe^(2+)/Fe^(3+)and Mn^(2+)/Mn^(3+)were evaluated using in-situ XAS.This combination of synchrotron in-situ X-ray techniques gives clear insights into the non-equilibrium phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material.This new understanding will be useful for further developments of this highly promising cathode material for practical commercialization.展开更多
Conventional x-ray stereoradiography based on film radiography is not practical due to its inconvenient and time-consuming procedures. In this research, an image viewing system consisted of a 30 cm × 30 cm gadoli...Conventional x-ray stereoradiography based on film radiography is not practical due to its inconvenient and time-consuming procedures. In this research, an image viewing system consisted of a 30 cm × 30 cm gadolinium oxy-sulfide (GOS) fluorescent screen and a Cannon 500D digital camera were designed and constructed for real-time and near real-time x-ray imaging. The camera was connected to a laptop computer via USB port to allow remote camera setting and control as well as view image on the computer. The system was tested with x-rays generated from a Rigaku x-ray tube for its response at various camera settings and exposure times. The image brightness increased with increasing of the camera ISO setting and with the exposure time as expected. To test the system performance, two test specimens were radiographed including a video camera and a floppy disk drive as well as two simulated specimens. Each of the test specimens was also radiographed at two positions by moving the specimens approximately 6 cm from the first position. The two radiographs of each specimen were then combined to make an anaglyph image that could be viewed in 3D on a normal LCD or LED monitor by using appropriate color glasses. When the two radiographs were combined to make MPO (multiple object) file format, it could be viewed in 3D on a 3D monitor with or without 3D glasses depending on type of the monitor. The developed system could be conveniently employed for routine inspection of a specimen both in 2D and 3D within a minute.展开更多
The present study aims to monitor and assess the water quality of the Bezerra River located in the Western Brazilian Parana state. For the monitoring of river waters, six samplings were established per month during on...The present study aims to monitor and assess the water quality of the Bezerra River located in the Western Brazilian Parana state. For the monitoring of river waters, six samplings were established per month during one year. As indicators of the water quality, physico-chemical parameters such as water temperature, pH, turbidity, dissolved oxygen and COD (chemical oxygen demand) were chosen, as well as trace and majority element concentrations. It is noteworthy that the mean annual values of conductivity, turbidity and COD have progressively increased along the river with maximum values after the Cascavel western sewage treatment plant. Only 13 elements were found in the six collection points, but the metallic elements Cr, Mn, Fe, Cu and Zn have shown concentrations above the maximum limits recommended by Brazilian environmental legislation, suggesting the presence of highly polluting anthropogenic sources. Correlation analyses were used to determine the spatio-variability of water quality variables. The six collection sites were grouped into two clusters, with the element composition in the first cluster (sites 1, 2 and 6) being due to strong anthropogenic activities. The study of the Bezerra River water quality could help to develop municipal environmental policies and help with the management of water conservation in the Bezerra River basin.展开更多
China’s first solar mission,the Advanced Space-based Solar Observatory(ASO-S),is now changing from Phase B to Phase C.Its main scientific objectives are summarized as’1M2B’,namely magnetic field and two types of bu...China’s first solar mission,the Advanced Space-based Solar Observatory(ASO-S),is now changing from Phase B to Phase C.Its main scientific objectives are summarized as’1M2B’,namely magnetic field and two types of bursts(solar flares and coronal mass ejections).Among the three scientific payloads,Hard X-ray Imager(HXI)observes images and spectra of X-ray bursts in solar flares.In this paper,we briefly report on the progresses made by the HXI science team(data and software team)during the design phase(till May 2019).These include simulations of HXI imaging,optimization of HXI grids,development of imaging algorithms,estimation of orbital background,as well as in-orbit calibration plan.These efforts provided guidance for the engineering,improved HXI’s imaging capability and reduced the cost of the instrument.展开更多
Hard X-ray Imager(HXI)is one of the three scientific instruments onboard the Advanced Spacebased Solar Observatory(ASO-S)mission,which is proposed for the 25th solar maximum by the Chinese solar community.HXI is desig...Hard X-ray Imager(HXI)is one of the three scientific instruments onboard the Advanced Spacebased Solar Observatory(ASO-S)mission,which is proposed for the 25th solar maximum by the Chinese solar community.HXI is designed to investigate the non-thermal high-energy electrons accelerated in solar flares by providing images of solar flaring regions in the energy range from 30 keV to 200 keV.The imaging principle of HXI is based on spatially modulated Fourier synthesis and utilizes about 91 sets of bi-grid sub-collimators and corresponding LaBr3 detectors to obtain Fourier components with a spatial resolution of about 3 arcsec and a time resolution better than 0.5 s.An engineering prototype has been developed and tested to verify the feasibility of design.In this paper,we present background,instrument design and the development and test status of the prototype.展开更多
Several experiments are performed on the ShenGuang-Ⅱ laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of genera...Several experiments are performed on the ShenGuang-Ⅱ laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of generating these high intensity sources. By using a time-integrated space-resolved keV spectroscope and pinhole camera, potential helium-like titanium Kα x-ray backlighting (radiography) line source is studied as a function of laser wavelength, ratio of pre-pulse intensity to main pulse intensity, and laser intensity (from 7.25 to ~ 11.3 × 10^15 W/cm2). One-dimensional radiography using a grid consisting of 5 #m Au wires on 16 μm period and the pinhole-assisted point projection is tested. The measurements show that the size of the helium-like titanium Ka source from a simple foil target is larger than 100 ~m, and relative x-ray line emission conversion efficiency ~x from the incident laser light energy to helium- like titanium K-shell spectrum increases significantly with pre-pulse intensity increasing, increases rapidly with laser wavelength decreasing, and increases moderately with main laser intensity increasing. It is also found that a gold gird foils can reach an imaging resolution better than 5-μm featured with high contrast. It is further demonstrated that the pinhole-assisted point projection at such a level will be a novel two-dimensional imaging diagnostic technique for inertial confinement fusion experiments.展开更多
BACKGROUND: This study aimed to evaluate emergency medicine doctors' accuracy in predicting the need of film printing in a simulated setting of computed radiography and assess whether this can facilitate optimal pat...BACKGROUND: This study aimed to evaluate emergency medicine doctors' accuracy in predicting the need of film printing in a simulated setting of computed radiography and assess whether this can facilitate optimal patient care.METHODS: Cross sectional study was conducted from 20 March 2009 to 3 April 2009 in 1334 patients. After clinical assessment of those patients who needed X-ray examination, doctors in the emergency department would indicate whether film printing was necessary for subsequent patient care in a simulated computed radiography setting. The fi nal discharge plan was then retrieved from each patient record. Accuracy of doctors' prediction was calculated by comparing the initial request for radiographic film printing and the final need of film. Doctors with different level of emergency medicine experience would also be analyzed and compared.RESULTS: The sensitivity of predicting fi lm printing was 84.5% and the specifi city of predicting no fi lm printing was 91.2%. Positive predictive value was 88.4% while negative predictive value was 88.2%. The overall accuracy was 88.2%. The accuracy of doctors stratified into groups of fellows, higher trainees and basic trainees were 85.4%, 90.5% and 88.5% respectively (P=0.073).CONCLUSIONS: Our study showed that doctors can reliably predict whether film printing is needed after clinical assessment of patients, before actual image viewing. Advanced indication for film printing at the time of imaging request for selected patients can save time for all parties with minimal wastage.展开更多
In order to estimate the electron temperature soft x-ray imaging diagnostics using a double filter technique has been developed in the HT-7 tokamak. The chosen thicknesses of the Be foil are 12.5 μm and 70 μm, respe...In order to estimate the electron temperature soft x-ray imaging diagnostics using a double filter technique has been developed in the HT-7 tokamak. The chosen thicknesses of the Be foil are 12.5 μm and 70 μm, respectively. In this article both the main design of the diagnostic configuration and the method to estimate the electron temperature are presented. The results agree with those estimated from the soft x-ray pulse height analyzer (PHA). The main causes of systematic error have also been investigated.展开更多
Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiograp...Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiographer to keep exposure as low as reasonably achievable. Objective: To derive a computed radiography exposure chart for a negroid population using AGFA photostimulable phosphor plates and a GE static X-ray machine. Materials and Method: A static X-ray machine, a digitizer, and photostimulable phosphor plates were used for the X-ray examination. Chest examinations were done at a Focus-Film-Distance (FFD) of 150 - 180 cm while all other examinations were conducted at 90 - 100 cm FFD. The range of exposure factors (kVp, mA and mAs) used by radiog-raphers in the centre was noted and the 90th percentile calculated. Over a three-month period, the patients were examined with the 90th percentile of tube potential (kVp) while keeping other factors constant. The kVp was gradually decreased and halted if radiologists and radiographers uncon-nected with the work expressed misgivings about the quality of the image. A similar procedure was adopted for the tube current (mA). The threshold adopted as low as reasonably achievable was the factor preceding the point of observation by other personnel. Metrics for central tendency from the statistical packages for social sciences, version 17.0 was used to analyze the data. Results: 335 subjects of both gender aged 0 - 92 years were examined by the researchers. Adult exposure factors used by the radiographers (and those derived by the researchers) had a range of 45 - 130 kVp (62 - 94 kVp), 63 - 320 mA (100 - 250 mA) and 4.0 - 25.0 mAs (5.0 - 20.0 mAs) respectively. Pediatric chest (and researchers-derived) factors were 50 - 75 kVp (52 - 65 kVp), 50 - 250 mA (100 - 220 mA) and 3.20 - 10.0 mAs (3.2 - 6.5 mAs) respectively. Conclusion: Upper threshold of adult (and paediatric) exposure factors in computed radiography with comparable equipment and accessories should not exceed 94 kVp (65 kVp), 250 mA (220 mA) and 20.0 mAs (6.5 mAs) respectively. The derived exposure chart is also adequate to address motion unsharpness in chest examinations.展开更多
AIM: To determine the utility of X-ray in identifying non-metallic foreign body(FB) and assess inter-radiologist agreement in identifying non-metal FB. METHODS: Focus groups of nurses, fellows, and attending physician...AIM: To determine the utility of X-ray in identifying non-metallic foreign body(FB) and assess inter-radiologist agreement in identifying non-metal FB. METHODS: Focus groups of nurses, fellows, and attending physicians were conducted to determine commonly ingested objects suitable for inclusion. Twelve potentially ingested objects(clay, plastic bead, crayon, plastic ring, plastic army figure, glass bead, paperclip, drywall anchor, eraser, Lego?, plastic triangle toy, and barrette) were embedded in a gelatin slab placed on top of a water-equivalent phantom to simulate density of a child's abdomen. The items were selected due to wide availability and appropriate size for accidental pediatric ingestion. Plain radiography of the embedded FBs was obtained. Five experienced radiologists blinded to number and types of objects were asked to identify the FBs. The radiologist was first asked to count thenumber of items that were visible then to identify the shape of each item and describe it to a study investigator who recorded all responses. Overall inter-rater reliability was analyzed using percent agreement and κ coefficient. We calculated P value to assess the probability of error involved in accepting the κ value.RESULTS: Fourteen objects were radiographed including 12 original objects and 2 duplicates. The model's validity was supported by clear identification of a radiolucent paperclip as a positive control, and lack of identification of plastic beads(negative control) despite repeated inclusion. Each radiologist identified 7-9 of the 14 objects(mean 8, 67%). Six unique objects(50%) were identified by all radiologists and four unique objects(33%) were not identified by any radiologist(plastic bead, LegoTM, plastic triangle toy, and barrette). Identification of objects that were not present, false-positives, occurred 1-2 times per radiologist(mean 1.4). An additional 17% of unique objects were identified by less than half of the radiologists. Agreement between radiologists was considered almost perfect(kappa 0.86 ± 0.08, P < 0.0001).CONCLUSION: We demonstrate potential non-identification of commonly ingested non-metal FBs in children. A registry for radiographic visibility of ingested objects should be created to improve clinical decision-making.展开更多
Introduction: Fractures of the clavicle are common and make up 5% - 10% of all fractures. Treatment options in part depend on the location of the fracture along the bone and degree of displacement. These two parameter...Introduction: Fractures of the clavicle are common and make up 5% - 10% of all fractures. Treatment options in part depend on the location of the fracture along the bone and degree of displacement. These two parameters are best determined by good quality, standardized radiographs of the clavicle. We reviewed the literature to determine the optimal radiographs of clavicle fractures and their influence on the treatment plan. Methods: A comprehensive search of Medline? database was undertaken with the following search terms and MeSH headings: clavicle, fractures, bone, radiography, and X-ray. We included articles in English published from 1950 to present. We ruled out fractures in children, fracture dislocations, open fractures, those with neurological and vascular injuries and fractures involving the acromioclavicular or sternoclavicular joints. Findings: Of the 821 citations obtained, only four studies proved eligible. In the most pertinent, four orthopaedic surgeons were shown standard views (antero-posterior and 20°cephalic tilt) of 50 clavicle fractures and then additional two views (45°cephalic and caudal tilt), and found that alternative views influenced their decision making, with more surgeons opting for surgical fixation. In a different study, it was shown that orthogonal views of the clavicle increased surgeons’ understanding and improved their treatment of these fractures. The third paper was a case series on clavicle fractures that were missed on the initial antero-posterior radiograph, and the fourth paper postulated that postero-anterior views of the thorax were most accurate in determining length of the clavicle. Conclusion: Studies showing an optimal view for assessment of clavicle fractures with a decision to then progressing to operative fixation are few, but the evidence points towards surgical fixation when alternative views of mid-shaft clavicle fractures are present.展开更多
Accurate positioning reduces the X-ray exposure of the subject and produces a valuable X-ray image for diagnosis. This paper describes the development of a positioning training tool that supports those studying to be ...Accurate positioning reduces the X-ray exposure of the subject and produces a valuable X-ray image for diagnosis. This paper describes the development of a positioning training tool that supports those studying to be radiological technologists in learning the positioning technique efficiently. Students perform the positioning on a personal computer using a three-dimensional computer graphics (3DCG) phantom constructed from computed tomography (CT) image data and confirm the produced plane image corresponding to the positioned phantom. It is expected that students will be able to undertake positioning training using our tool anywhere and at any time without using X-ray equipment. Repeated use of our training tool will help students attain a deep understanding of anatomy and acquire positioning skills efficiently and accurately.展开更多
Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances i...Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances in technology it is now possible to have digital solutions for radiography problems at a very cost effective, environment friendly and also with better image quality in certain applications when compared to CRF. Rather than using a CRF a computed radiography (CR) uses imaging plates to capture the image. The imaging plate contains photosensitive phosphors which contain the latent image. Later this plate is introduced into a reader which is then converted into a digital image. The major advantage and the cost effective element of this system is the ability to reuse the imaging plates unlike the photographic film where in only a single image can be captured and cannot be reused. The computed radiography drastically reduces the cost by eliminating the use of chemicals like film developers and fixers and also the need for a storage room. It also helps to reduce the costs that are involved in the disposal of wastes due to conventional radiography. This paper investigates whether it is cost effective to use computed radiography over film based system at Al-Batnan Medical Center (BMC), Tobruk, Libya by using Cost Benefit Analysis (CBA). Apart from the initial cost of the CR System, based on the data collected from the center, from the year 2008 to 2012 (until June 2012) a total of 581,566 images were produced with the total cost incurred using film based system being USD 4,652,528. If the same number of images were produced using a CR system the total cost incurred would have been USD 82,600. Taking into consideration the cost of a new CR system to be USD 120,000 the overall cost of producing these images is USD 202,600. It is observed that an amount of USD 4,449,928 could have been saved over the period of 5 years starting from 2008 to 2012 by using the CR system at BMC. Using Cost Benefit Analysis, the average value of the net difference between the costs and benefits for the conventional film based system is ?83.38 where as for the Computed System it is 22.06. Based on the principles of Cost Benefit Analysis it can be concluded that the system with a net positive difference is more cost beneficial than the other. With the help of the above two analysis it can be concluded that the use of computed radiography is definitely more cost effective for use at BMC, when compared to the conventional x-ray radiography.展开更多
The purpose of this paper is to introduce the basic steps of X-ray image interpretation of aviation castings,so as to provide a learning guidance for beginners and reduce the exploration time.Among them,the introducti...The purpose of this paper is to introduce the basic steps of X-ray image interpretation of aviation castings,so as to provide a learning guidance for beginners and reduce the exploration time.Among them,the introduction of specifications,the requirements for image quality,and the application of reference radiographs are just a sorting out the key points.If there is a need for practical application,we should conduct a deeper exploration and understanding of each specification,not just cite this article.展开更多
基金supported by the U.S.National Science Foundation (2208972,2120559,and 2323117)
文摘Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.
基金financialy supported by National Key R&D Program of China(2022YFB2402600)the National Natural Science Foundation of China(22279166)+1 种基金the Research Start-up Funds from Sun Yat-Sen University(200306)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(22qntd0101 and 22dfx01)
文摘Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.
基金the financial support from China Scholarship Council(202108080263)Financial support by the Federal Ministry of Education and Research(BMBF)under the project“He Na”(03XP0390C)+1 种基金the German Research Foundation(DFG)under the joint German-Russian DFG project“KIBSS”(448719339)are acknowledgedthe financial support from the Federal Ministry of Education and Research(BMBF)under the project“Ka Si Li”(03XP0254D)in the competence cluster“Excell Batt Mat”。
文摘Transition metal sulfides have been regarded as promising anode materials for sodium-ion batteries(SIB).However,they face the challenges of poor electronic conductivity and large volume change,which result in capacity fade and low rate capability.In this work,a composite containing ultrasmall CoS(~7 nm)nanoparticles embedded in heteroatom(N,S,and O)-doped carbon was synthesized by an efficient one-step sulfidation process using a Co(Salen)precursor.The ultrasmall CoS nanoparticles are beneficial for mechanical stability and shortening Na-ions diffusion pathways.Furthermore,the N,S,and O-doped defect-rich carbon provides a robust and highly conductive framework enriched with active sites for sodium storage as well as mitigates volume expansion and polysulfide shuttle.As anode for SIB,CoS@HDC exhibits a high initial capacity of 906 mA h g^(-1)at 100 mA g^(-1)and a stable long-term cycling life with over 1000 cycles at 500 mA g^(-1),showing a reversible capacity of 330 mA h g^(-1).Meanwhile,the CoS@HDC anode is proven to maintain its structural integrity and compositional reversibility during cycling.Furthermore,Na-ion full batteries based on the CoS@HDC anode and Na_(3)V_(2)(PO_(4))_(3)cathode demonstrate a stable cycling behavior with a reversible specific capacity of~200 m A h g^(-1)at least for 100 cycles.Moreover,advanced synchrotron operando X-ray diffraction,ex-situ X-ray absorption spectroscopy,and comprehensive electrochemical tests reveal the structural transformation and the Co coordination chemistry evolution of the CoS@HDC during cycling,providing fundamental insights into the sodium storage mechanism.
基金the National Natural Science Foundation of China (Grant nos.21233004,21303147 and 21473148,etc.)the National Key Research and Development Program (Grant no.2016YFB0901500)
文摘The increased use of rechargeable batteries in portable electronic devices and the continuous develop-ment of novel applications (e.g. transportation and large scale energy storage), have raised a strong de-mand for high performance batteries with increased energy density, cycle and calendar life, safety andlower costs. This triggers significant efforts to reveal the fundamental mechanism determining batteryperformance with the use of advanced analytical techniques. However, the inherently complex character-istics of battery systems make the mechanism analysis sophisticated and difficult. Synchrotron radiationis an advanced collimated light source with high intensity and tunable energies. It has particular ad-vantages in electronic structure and geometric structure (both the short-range and long-range structure)analysis of materials on different length and time scales. In the past decades, synchrotron X-ray tech-niques have been widely used to understand the fundamental mechanism and guide the technologicaloptimization of batteries. In particular, in situ and operando techniques with high spatial and temporalresolution, enable the nondestructive, real time dynamic investigation of the electrochemical reaction,and lead to significant deep insights into the battery operation mechanism. This review gives a brief introduction of the application of synchrotron X-ray techniques to the inves-tigation of battery systems. The five widely implicated techniques, including X-ray diffraction (XRD), PairDistribution Function (PDF), Hard and Soft X-ray absorption spectroscopy (XAS) and X-ray photoelectronspectroscopy (XPS) will be reviewed, with the emphasis on their in situ studies of battery systems during cycling.
基金Supported by Partially funded by FESR P.O.Apulia Region 2007-2013-Action 1.2.4,No.3Q5AX31
文摘Effective prevention and management of osteoporosis would require suitable methods for population screenings and early diagnosis. Current clinicallyavailable diagnostic methods are mainly based on the use of either X-rays or ultrasound(US). All X-ray based methods provide a measure of bone mineral density(BMD), but it has been demonstrated that other structural aspects of the bone are important in determining fracture risk, such as mechanical features and elastic properties, which cannot be assessed using densitometric techniques. Among the most commonly used techniques, dual X-ray absorptiometry(DXA) is considered the current 'gold standard' for osteoporosis diagnosis and fracture risk prediction. Unfortunately, as other X-ray based techniques, DXA has specific limitations(e.g., use of ionizing radiation, large size of the equipment, high costs, limited availability) that hinder its application for population screenings and primary care diagnosis. This has resulted in an increasing interest in developing reliable pre-screening tools for osteoporosis such as quantitative ultrasound(QUS) scanners, which do not involve ionizing radiation exposure and represent a cheaper solution exploiting portable and widely available devices. Furthermore, the usefulness of QUS techniques in fracture risk prediction has been proven and, with the last developments, they are also becoming a more and more reliable approach for assessing bone quality. However, the US assessment of osteoporosis is currently used only as a pre-screening tool, requiring a subsequent diagnosis confirmation by means of a DXA evaluation. Here we illustrate the state of art in the early diagnosis of this 'silent disease' and show up recent advances for its prevention and improved management through early diagnosis.
基金the Science Achievement Scholarship of Thailand(SAST)for financial supportpartially supported by the Institute of Nanomaterials Research and Innovation for Energy(IN-RIE)+1 种基金the Research and Graduate Studies,Khon Kaen University(KKU)Synchrotron Light Research Institute(SLRI),Thailand。
文摘LiMn_(0.5)Fe_(0.5)PO_(4) has attracted great interest due to its good electrochemical performance and higher operating voltages.This has led to a greater than 30 percent higher energy density than for commercial Li Fe PO4 olivine cathodes.Understanding the phase transition behaviors and kinetics of this material will help researchers to design and develop next generation cathodes for Li-ion batteries.In this study,we investigated non-equilibrium phase transition behaviors in a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material during charge–discharge processes by varying current rates(C-rates)using synchrotron in-situ X-ray techniques.These methods included wide angle X-ray scattering(in-situ WAXS)and X-ray absorption spectroscopy(in-situ XAS).The WAXS spectra indicate that the phase transition of LiMn_(0.5)Fe_(0.5)PO_(4) material at slow C-rates is induced by a two-phase reaction.In contrast,at a high C-rate(5 C),the formation of an intermediate phase upon discharge is clearly observed.Concurrently,the oxidation numbers of the redox reactions of Fe^(2+)/Fe^(3+)and Mn^(2+)/Mn^(3+)were evaluated using in-situ XAS.This combination of synchrotron in-situ X-ray techniques gives clear insights into the non-equilibrium phase transition behavior of a LiMn_(0.5)Fe_(0.5)PO_(4) cathode material.This new understanding will be useful for further developments of this highly promising cathode material for practical commercialization.
文摘Conventional x-ray stereoradiography based on film radiography is not practical due to its inconvenient and time-consuming procedures. In this research, an image viewing system consisted of a 30 cm × 30 cm gadolinium oxy-sulfide (GOS) fluorescent screen and a Cannon 500D digital camera were designed and constructed for real-time and near real-time x-ray imaging. The camera was connected to a laptop computer via USB port to allow remote camera setting and control as well as view image on the computer. The system was tested with x-rays generated from a Rigaku x-ray tube for its response at various camera settings and exposure times. The image brightness increased with increasing of the camera ISO setting and with the exposure time as expected. To test the system performance, two test specimens were radiographed including a video camera and a floppy disk drive as well as two simulated specimens. Each of the test specimens was also radiographed at two positions by moving the specimens approximately 6 cm from the first position. The two radiographs of each specimen were then combined to make an anaglyph image that could be viewed in 3D on a normal LCD or LED monitor by using appropriate color glasses. When the two radiographs were combined to make MPO (multiple object) file format, it could be viewed in 3D on a 3D monitor with or without 3D glasses depending on type of the monitor. The developed system could be conveniently employed for routine inspection of a specimen both in 2D and 3D within a minute.
文摘The present study aims to monitor and assess the water quality of the Bezerra River located in the Western Brazilian Parana state. For the monitoring of river waters, six samplings were established per month during one year. As indicators of the water quality, physico-chemical parameters such as water temperature, pH, turbidity, dissolved oxygen and COD (chemical oxygen demand) were chosen, as well as trace and majority element concentrations. It is noteworthy that the mean annual values of conductivity, turbidity and COD have progressively increased along the river with maximum values after the Cascavel western sewage treatment plant. Only 13 elements were found in the six collection points, but the metallic elements Cr, Mn, Fe, Cu and Zn have shown concentrations above the maximum limits recommended by Brazilian environmental legislation, suggesting the presence of highly polluting anthropogenic sources. Correlation analyses were used to determine the spatio-variability of water quality variables. The six collection sites were grouped into two clusters, with the element composition in the first cluster (sites 1, 2 and 6) being due to strong anthropogenic activities. The study of the Bezerra River water quality could help to develop municipal environmental policies and help with the management of water conservation in the Bezerra River basin.
基金supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA15320104, XDA15052200 and XDA15320300)the National Natural Science Foundation of China (Grant Nos. 11427803, 11820101002, U1731241 and U1631242)+1 种基金the ‘Thousand Young Talents Plan’the Jiangsu Innovative and Entrepreneurial Talents Program
文摘China’s first solar mission,the Advanced Space-based Solar Observatory(ASO-S),is now changing from Phase B to Phase C.Its main scientific objectives are summarized as’1M2B’,namely magnetic field and two types of bursts(solar flares and coronal mass ejections).Among the three scientific payloads,Hard X-ray Imager(HXI)observes images and spectra of X-ray bursts in solar flares.In this paper,we briefly report on the progresses made by the HXI science team(data and software team)during the design phase(till May 2019).These include simulations of HXI imaging,optimization of HXI grids,development of imaging algorithms,estimation of orbital background,as well as in-orbit calibration plan.These efforts provided guidance for the engineering,improved HXI’s imaging capability and reduced the cost of the instrument.
基金supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (Grant No. XDA15320104)the National Natural Science Foundation of China (Grant Nos. 11427803, 11622327, 11703079, 11803093 and 11820101002)
文摘Hard X-ray Imager(HXI)is one of the three scientific instruments onboard the Advanced Spacebased Solar Observatory(ASO-S)mission,which is proposed for the 25th solar maximum by the Chinese solar community.HXI is designed to investigate the non-thermal high-energy electrons accelerated in solar flares by providing images of solar flaring regions in the energy range from 30 keV to 200 keV.The imaging principle of HXI is based on spatially modulated Fourier synthesis and utilizes about 91 sets of bi-grid sub-collimators and corresponding LaBr3 detectors to obtain Fourier components with a spatial resolution of about 3 arcsec and a time resolution better than 0.5 s.An engineering prototype has been developed and tested to verify the feasibility of design.In this paper,we present background,instrument design and the development and test status of the prototype.
基金supported by the National High Technology Development Program of China (Grant No. 2009AA8046006)
文摘Several experiments are performed on the ShenGuang-Ⅱ laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of generating these high intensity sources. By using a time-integrated space-resolved keV spectroscope and pinhole camera, potential helium-like titanium Kα x-ray backlighting (radiography) line source is studied as a function of laser wavelength, ratio of pre-pulse intensity to main pulse intensity, and laser intensity (from 7.25 to ~ 11.3 × 10^15 W/cm2). One-dimensional radiography using a grid consisting of 5 #m Au wires on 16 μm period and the pinhole-assisted point projection is tested. The measurements show that the size of the helium-like titanium Ka source from a simple foil target is larger than 100 ~m, and relative x-ray line emission conversion efficiency ~x from the incident laser light energy to helium- like titanium K-shell spectrum increases significantly with pre-pulse intensity increasing, increases rapidly with laser wavelength decreasing, and increases moderately with main laser intensity increasing. It is also found that a gold gird foils can reach an imaging resolution better than 5-μm featured with high contrast. It is further demonstrated that the pinhole-assisted point projection at such a level will be a novel two-dimensional imaging diagnostic technique for inertial confinement fusion experiments.
文摘BACKGROUND: This study aimed to evaluate emergency medicine doctors' accuracy in predicting the need of film printing in a simulated setting of computed radiography and assess whether this can facilitate optimal patient care.METHODS: Cross sectional study was conducted from 20 March 2009 to 3 April 2009 in 1334 patients. After clinical assessment of those patients who needed X-ray examination, doctors in the emergency department would indicate whether film printing was necessary for subsequent patient care in a simulated computed radiography setting. The fi nal discharge plan was then retrieved from each patient record. Accuracy of doctors' prediction was calculated by comparing the initial request for radiographic film printing and the final need of film. Doctors with different level of emergency medicine experience would also be analyzed and compared.RESULTS: The sensitivity of predicting fi lm printing was 84.5% and the specifi city of predicting no fi lm printing was 91.2%. Positive predictive value was 88.4% while negative predictive value was 88.2%. The overall accuracy was 88.2%. The accuracy of doctors stratified into groups of fellows, higher trainees and basic trainees were 85.4%, 90.5% and 88.5% respectively (P=0.073).CONCLUSIONS: Our study showed that doctors can reliably predict whether film printing is needed after clinical assessment of patients, before actual image viewing. Advanced indication for film printing at the time of imaging request for selected patients can save time for all parties with minimal wastage.
基金supported by National Natural Science Foundation of China (Nos. 10375070, 10305012)
文摘In order to estimate the electron temperature soft x-ray imaging diagnostics using a double filter technique has been developed in the HT-7 tokamak. The chosen thicknesses of the Be foil are 12.5 μm and 70 μm, respectively. In this article both the main design of the diagnostic configuration and the method to estimate the electron temperature are presented. The results agree with those estimated from the soft x-ray pulse height analyzer (PHA). The main causes of systematic error have also been investigated.
文摘Background: Computed radiography has a wider exposure latitude when compared with film-screen imaging system. Consequently, the risk of dose creep is high. A conscientious effort is there-fore, needed by the radiographer to keep exposure as low as reasonably achievable. Objective: To derive a computed radiography exposure chart for a negroid population using AGFA photostimulable phosphor plates and a GE static X-ray machine. Materials and Method: A static X-ray machine, a digitizer, and photostimulable phosphor plates were used for the X-ray examination. Chest examinations were done at a Focus-Film-Distance (FFD) of 150 - 180 cm while all other examinations were conducted at 90 - 100 cm FFD. The range of exposure factors (kVp, mA and mAs) used by radiog-raphers in the centre was noted and the 90th percentile calculated. Over a three-month period, the patients were examined with the 90th percentile of tube potential (kVp) while keeping other factors constant. The kVp was gradually decreased and halted if radiologists and radiographers uncon-nected with the work expressed misgivings about the quality of the image. A similar procedure was adopted for the tube current (mA). The threshold adopted as low as reasonably achievable was the factor preceding the point of observation by other personnel. Metrics for central tendency from the statistical packages for social sciences, version 17.0 was used to analyze the data. Results: 335 subjects of both gender aged 0 - 92 years were examined by the researchers. Adult exposure factors used by the radiographers (and those derived by the researchers) had a range of 45 - 130 kVp (62 - 94 kVp), 63 - 320 mA (100 - 250 mA) and 4.0 - 25.0 mAs (5.0 - 20.0 mAs) respectively. Pediatric chest (and researchers-derived) factors were 50 - 75 kVp (52 - 65 kVp), 50 - 250 mA (100 - 220 mA) and 3.20 - 10.0 mAs (3.2 - 6.5 mAs) respectively. Conclusion: Upper threshold of adult (and paediatric) exposure factors in computed radiography with comparable equipment and accessories should not exceed 94 kVp (65 kVp), 250 mA (220 mA) and 20.0 mAs (6.5 mAs) respectively. The derived exposure chart is also adequate to address motion unsharpness in chest examinations.
文摘AIM: To determine the utility of X-ray in identifying non-metallic foreign body(FB) and assess inter-radiologist agreement in identifying non-metal FB. METHODS: Focus groups of nurses, fellows, and attending physicians were conducted to determine commonly ingested objects suitable for inclusion. Twelve potentially ingested objects(clay, plastic bead, crayon, plastic ring, plastic army figure, glass bead, paperclip, drywall anchor, eraser, Lego?, plastic triangle toy, and barrette) were embedded in a gelatin slab placed on top of a water-equivalent phantom to simulate density of a child's abdomen. The items were selected due to wide availability and appropriate size for accidental pediatric ingestion. Plain radiography of the embedded FBs was obtained. Five experienced radiologists blinded to number and types of objects were asked to identify the FBs. The radiologist was first asked to count thenumber of items that were visible then to identify the shape of each item and describe it to a study investigator who recorded all responses. Overall inter-rater reliability was analyzed using percent agreement and κ coefficient. We calculated P value to assess the probability of error involved in accepting the κ value.RESULTS: Fourteen objects were radiographed including 12 original objects and 2 duplicates. The model's validity was supported by clear identification of a radiolucent paperclip as a positive control, and lack of identification of plastic beads(negative control) despite repeated inclusion. Each radiologist identified 7-9 of the 14 objects(mean 8, 67%). Six unique objects(50%) were identified by all radiologists and four unique objects(33%) were not identified by any radiologist(plastic bead, LegoTM, plastic triangle toy, and barrette). Identification of objects that were not present, false-positives, occurred 1-2 times per radiologist(mean 1.4). An additional 17% of unique objects were identified by less than half of the radiologists. Agreement between radiologists was considered almost perfect(kappa 0.86 ± 0.08, P < 0.0001).CONCLUSION: We demonstrate potential non-identification of commonly ingested non-metal FBs in children. A registry for radiographic visibility of ingested objects should be created to improve clinical decision-making.
文摘Introduction: Fractures of the clavicle are common and make up 5% - 10% of all fractures. Treatment options in part depend on the location of the fracture along the bone and degree of displacement. These two parameters are best determined by good quality, standardized radiographs of the clavicle. We reviewed the literature to determine the optimal radiographs of clavicle fractures and their influence on the treatment plan. Methods: A comprehensive search of Medline? database was undertaken with the following search terms and MeSH headings: clavicle, fractures, bone, radiography, and X-ray. We included articles in English published from 1950 to present. We ruled out fractures in children, fracture dislocations, open fractures, those with neurological and vascular injuries and fractures involving the acromioclavicular or sternoclavicular joints. Findings: Of the 821 citations obtained, only four studies proved eligible. In the most pertinent, four orthopaedic surgeons were shown standard views (antero-posterior and 20°cephalic tilt) of 50 clavicle fractures and then additional two views (45°cephalic and caudal tilt), and found that alternative views influenced their decision making, with more surgeons opting for surgical fixation. In a different study, it was shown that orthogonal views of the clavicle increased surgeons’ understanding and improved their treatment of these fractures. The third paper was a case series on clavicle fractures that were missed on the initial antero-posterior radiograph, and the fourth paper postulated that postero-anterior views of the thorax were most accurate in determining length of the clavicle. Conclusion: Studies showing an optimal view for assessment of clavicle fractures with a decision to then progressing to operative fixation are few, but the evidence points towards surgical fixation when alternative views of mid-shaft clavicle fractures are present.
文摘Accurate positioning reduces the X-ray exposure of the subject and produces a valuable X-ray image for diagnosis. This paper describes the development of a positioning training tool that supports those studying to be radiological technologists in learning the positioning technique efficiently. Students perform the positioning on a personal computer using a three-dimensional computer graphics (3DCG) phantom constructed from computed tomography (CT) image data and confirm the produced plane image corresponding to the positioned phantom. It is expected that students will be able to undertake positioning training using our tool anywhere and at any time without using X-ray equipment. Repeated use of our training tool will help students attain a deep understanding of anatomy and acquire positioning skills efficiently and accurately.
文摘Conventional radiography with film (CRF) has been in use for diagnostic purposes for a long time now. It has proved to be a great assert for the radiographers in assessing various abnormalities. With recent advances in technology it is now possible to have digital solutions for radiography problems at a very cost effective, environment friendly and also with better image quality in certain applications when compared to CRF. Rather than using a CRF a computed radiography (CR) uses imaging plates to capture the image. The imaging plate contains photosensitive phosphors which contain the latent image. Later this plate is introduced into a reader which is then converted into a digital image. The major advantage and the cost effective element of this system is the ability to reuse the imaging plates unlike the photographic film where in only a single image can be captured and cannot be reused. The computed radiography drastically reduces the cost by eliminating the use of chemicals like film developers and fixers and also the need for a storage room. It also helps to reduce the costs that are involved in the disposal of wastes due to conventional radiography. This paper investigates whether it is cost effective to use computed radiography over film based system at Al-Batnan Medical Center (BMC), Tobruk, Libya by using Cost Benefit Analysis (CBA). Apart from the initial cost of the CR System, based on the data collected from the center, from the year 2008 to 2012 (until June 2012) a total of 581,566 images were produced with the total cost incurred using film based system being USD 4,652,528. If the same number of images were produced using a CR system the total cost incurred would have been USD 82,600. Taking into consideration the cost of a new CR system to be USD 120,000 the overall cost of producing these images is USD 202,600. It is observed that an amount of USD 4,449,928 could have been saved over the period of 5 years starting from 2008 to 2012 by using the CR system at BMC. Using Cost Benefit Analysis, the average value of the net difference between the costs and benefits for the conventional film based system is ?83.38 where as for the Computed System it is 22.06. Based on the principles of Cost Benefit Analysis it can be concluded that the system with a net positive difference is more cost beneficial than the other. With the help of the above two analysis it can be concluded that the use of computed radiography is definitely more cost effective for use at BMC, when compared to the conventional x-ray radiography.
文摘The purpose of this paper is to introduce the basic steps of X-ray image interpretation of aviation castings,so as to provide a learning guidance for beginners and reduce the exploration time.Among them,the introduction of specifications,the requirements for image quality,and the application of reference radiographs are just a sorting out the key points.If there is a need for practical application,we should conduct a deeper exploration and understanding of each specification,not just cite this article.