Using the visual inspection and base difference method and data from the X-ray Telescope (XRT) onboard Hinode and TRACE with improved spatial and temporal resolution, we selected 48 X-ray transient brightenings (X...Using the visual inspection and base difference method and data from the X-ray Telescope (XRT) onboard Hinode and TRACE with improved spatial and temporal resolution, we selected 48 X-ray transient brightenings (XTBs) and 237 EUV transient brightenings (ETBs) to study the connection between these two types of transient brightenings (TBs). These ETBs and XTBs have smaller areas (8.42 Mm^2 and 36.3 Mm^2, respectively, on average) and shorter durations (9.0 min and 6.9 min, respectively, on average) than previous studies. These XTBs show three types of morphological structure: point-like, single-loop and multiple-loop. We find only 20% of the ETBs have corresponding XTBs while the other 80% have no X-ray signatures at all. This is presumably due to the small amount of released energy, which is not enough to heat the plasma to coronal temperatures which produce X-ray emission rather than being due to the limitation of spatial resolution and temperature sensitivity of the X-ray instrument. These small ETBs may significantly contribute to the coronal heating.展开更多
Temporal and spectral characteristics of X-ray emission from 60 flares of intensity ≥C class observed by the Solar X-ray Spectrometer (SOXS) during 2003-2011 are presented. We analyze the X-ray emission observed in...Temporal and spectral characteristics of X-ray emission from 60 flares of intensity ≥C class observed by the Solar X-ray Spectrometer (SOXS) during 2003-2011 are presented. We analyze the X-ray emission observed in four and three energy bands by the Si and Cadmium-Zinc-Telluride (CZT) detectors, respectively. The number of peaks in the intensity profile of the flares varies between 1 and 3. We find moderate correlation (R ~=0.2) between the rise time and the peak flux of the first peak of the flare irrespective of energy band, which is indicative of its energy-independent nature. Moreover, the magnetic field complexity of the flaring region is found to be highly anti-correlated (R = 0.61) with the rise time of the flares while positively correlated (R = 0.28) with the peak flux of the flare. The time delay between the peak of the X-ray emission in a given energy band and that in 25-30keV decreases with increasing energy, suggesting conduction cooling is dominant in the lower energies. Analysis of 340 spectra from 14 flares reveals that the peak of differential emission measure (DEM) evolution is delayed by 60-360 s relative to that of the temperature, and this time delay is inversely proportional to the peak flux of the flare. We conclude that temporal and intensity characteristics of flares are dependent on energy as well as the magnetic field configuration of the active region.展开更多
We investigate the 2005 August 22 flare event(00:54 UT) exploiting hard X-ray(HXR) observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) and microwave(MW) observations from the No...We investigate the 2005 August 22 flare event(00:54 UT) exploiting hard X-ray(HXR) observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) and microwave(MW) observations from the Nobeyama Solar Radio Observatory. The HXR time profile exposes well-damped quasi-periodic pulsations with four sequential peaks, and the MW time profile follows the corresponding peaks.Based on this feature, we derive the time relationship of HXRs and MWs with multifrequency data from the Nobeyama Radio Polarimeter, and the spatially resolvable data from RHESSI and the Nobeyama Radioheliograph. We find that both frequency dependent delays in MWs and energy dependent delays in HXRs are significant.Furthermore, MW emissions from the south source are delayed with respect to those from the north source at both 17 GHz and 34 GHz, but no significant delays are found in HXR emissions from the different sources at the same energies. To better understand all these long time delays, we derive the electron fluxes of different energies by fitting the observed HXR spectra with a single power-law thick-target model, and speculate that these delays might be related to an extended acceleration process. We further compare the time profile of a MW spectral index derived from 17 and 34 GHz fluxes with the flux densities, and find that the spectral index shows a strong anticorrelation with the HXR fluxes.展开更多
From the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESS1) catalog we select events which have approximately the same GOES class (high C - low M or 500-1200 counts s-1 within the RHESSI 6-12 keV energy ...From the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESS1) catalog we select events which have approximately the same GOES class (high C - low M or 500-1200 counts s-1 within the RHESSI 6-12 keV energy band), but with different maximal energies of detected hard X-rays. The selected events are subdivided into two groups: (1) flares with X-ray emissions observed by RHESSI up to only 50 keV and (2) flares with hard X-ray emission observed also above 50 keV. The main task is to understand observational peculiarities of these two flare groups. We use RHESSIX-ray data to obtain spectral and spa- tial information in order to find differences between selected groups. Spectra and images are analyzed in detail for six events (case study). For a larger number of samples (85 and 28 flares in the low-energy and high-energy groups respectively) we only make some generalizations. In spectral analysis we use the thick- target model for hard X-ray emission and one temperature assumption for thermal soft X-ray emission. RHESSI X-ray images are used for determination of flare region sizes. Although thermal and spatial prop- erties of these two groups of flares are not easily distinguishable, power law indices of hard X-rays show significant differences. Events from the high-energy group generally have a harder spectrum. Therefore, the efficiency of chromospheric evaporation is not sensitive to the hardness of nonthermal electron spectra but rather depends on the total energy flux of nonthermal electrons.展开更多
Synchrotron X-rays can be a useful tool to investigate electron accelera- tion at young supemova remnants (SNRs). At present, since the magnetic field con- figuration around the shocks of SNRs is uncertain, it is no...Synchrotron X-rays can be a useful tool to investigate electron accelera- tion at young supemova remnants (SNRs). At present, since the magnetic field con- figuration around the shocks of SNRs is uncertain, it is not clear whether electron acceleration is limited by SNR age, synchrotron cooling, or even escape from the ac- celeration region. We study whether the acceleration mechanism can be constrained by the cutoff shape of the electron spectrum around the maximum energy. We derive analytical formulae of the cutoff shape in each case where the maximum electron en- ergy is determined by SNR age, synchrotron cooling and escape from the shock. They are related to the energy dependence of the electron diffusion coefficient. Next, we discuss whether information on the cutoff shape can be provided by observations in the near future which will simply give the photon indices and the flux ratios in the soft and hard X-ray bands. We find that if the power-law index of the electron spectrum is independently determined by other observations, then we can constrain the cutoff shape by comparing theoretical predictions of the photon indices and/or the flux ratios with observed data which will be measured by NuSTAR and/or ASTRO-H. Such study is helpful in understanding the acceleration mechanism. In particular, it will supply another independent constraint on the magnetic field strength around the shocks of SNRs.展开更多
Using data-driven algorithms to accurately forecast solar flares requires reliable data sets.The solar flare dataset is composed of many non-flaring samples with a small percentage of flaring samples.This is called th...Using data-driven algorithms to accurately forecast solar flares requires reliable data sets.The solar flare dataset is composed of many non-flaring samples with a small percentage of flaring samples.This is called the class imbalance problem in data mining tasks.The prediction model is sensitive to most classes of the original data set during training.Therefore,the class imbalance problem for building up the flare prediction model from observational data should be systematically discussed.Aiming at the problem of class imbalance,three strategies are proposed corresponding to the data set,loss function,and training process:TypeⅠresamples the training samples,including oversampling for the minority class,undersampling,or mixed sampling for the majority class.TypeⅡusually changes the decision-making boundary,assigning the majority and minority categories of prediction loss to different weights.TypeⅢassigns different weights to the training samples,the majority categories are assigned smaller weights,and the minority categories are assigned larger weights to improve the training process of the prediction model.The main work of this paper compares these imbalance processing methods when building a flare prediction model and tries to find the optimal strategy.Our results show that among these strategies,the performance of oversampling and sample weighting is better than other strategies in most parameters,and the generality of resampling and changing the decision boundary is better.展开更多
We report multi-wavelength observations of four solar flares on 2014 July 07.We firstly select these flares according to the soft X-ray(SXR)and extreme ultraviolet(EUV)emissions recorded by the Extreme Ultraviolet Var...We report multi-wavelength observations of four solar flares on 2014 July 07.We firstly select these flares according to the soft X-ray(SXR)and extreme ultraviolet(EUV)emissions recorded by the Extreme Ultraviolet Variability Experiment and Geostationary Orbiting Environmental S atellites.Then their locations and geometries are identified from the full-disk images measured by the Atmospheric Imaging Assembly(AIA),and the time delays among the light curves in different channels are identified.The electron number densities are estimated using the differential emission measure method.We find that three of four flares show strong emissions in SXR channels and high temperature(>6 MK)EUV wavelengths during the impulsive phase,i.e.,AIA 131 A and 94 A,and then they emit peak radiation subsequently in the middle temperature(~0.6-3 MK)EUV channels.Moreover,they last for a long time and have smaller electron densities,which are probably driven by the interaction of hot diffuse flare loops.Only one flare emits radiation at almost the same time in all the observed wavelengths,lasts for a relatively short time,and has a larger electron density.It is also accompanied by a typeⅢradio burst.The bright emission at the EUV channel could be corresponding to the associated erupting filament.展开更多
基金supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 10873038 and 10833007)the National Basic Research Program of China (2006CB806302)CAS Project KJCX2-YW-T04
文摘Using the visual inspection and base difference method and data from the X-ray Telescope (XRT) onboard Hinode and TRACE with improved spatial and temporal resolution, we selected 48 X-ray transient brightenings (XTBs) and 237 EUV transient brightenings (ETBs) to study the connection between these two types of transient brightenings (TBs). These ETBs and XTBs have smaller areas (8.42 Mm^2 and 36.3 Mm^2, respectively, on average) and shorter durations (9.0 min and 6.9 min, respectively, on average) than previous studies. These XTBs show three types of morphological structure: point-like, single-loop and multiple-loop. We find only 20% of the ETBs have corresponding XTBs while the other 80% have no X-ray signatures at all. This is presumably due to the small amount of released energy, which is not enough to heat the plasma to coronal temperatures which produce X-ray emission rather than being due to the limitation of spatial resolution and temperature sensitivity of the X-ray instrument. These small ETBs may significantly contribute to the coronal heating.
基金the Gujarat Council on Science and Technology(GUJCOST),Dept.of Science&Technology,Govt.of Gujarat under the minor research project grants schemeGUJCOST for the financial assistance+1 种基金supported by NSFC(Grant Nos.41474151,41774150 and 4171101125)the International Postdoctoral Program of USTC
文摘Temporal and spectral characteristics of X-ray emission from 60 flares of intensity ≥C class observed by the Solar X-ray Spectrometer (SOXS) during 2003-2011 are presented. We analyze the X-ray emission observed in four and three energy bands by the Si and Cadmium-Zinc-Telluride (CZT) detectors, respectively. The number of peaks in the intensity profile of the flares varies between 1 and 3. We find moderate correlation (R ~=0.2) between the rise time and the peak flux of the first peak of the flare irrespective of energy band, which is indicative of its energy-independent nature. Moreover, the magnetic field complexity of the flaring region is found to be highly anti-correlated (R = 0.61) with the rise time of the flares while positively correlated (R = 0.28) with the peak flux of the flare. The time delay between the peak of the X-ray emission in a given energy band and that in 25-30keV decreases with increasing energy, suggesting conduction cooling is dominant in the lower energies. Analysis of 340 spectra from 14 flares reveals that the peak of differential emission measure (DEM) evolution is delayed by 60-360 s relative to that of the temperature, and this time delay is inversely proportional to the peak flux of the flare. We conclude that temporal and intensity characteristics of flares are dependent on energy as well as the magnetic field configuration of the active region.
基金Supported by the National Natural Science Foundation of China
文摘We investigate the 2005 August 22 flare event(00:54 UT) exploiting hard X-ray(HXR) observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) and microwave(MW) observations from the Nobeyama Solar Radio Observatory. The HXR time profile exposes well-damped quasi-periodic pulsations with four sequential peaks, and the MW time profile follows the corresponding peaks.Based on this feature, we derive the time relationship of HXRs and MWs with multifrequency data from the Nobeyama Radio Polarimeter, and the spatially resolvable data from RHESSI and the Nobeyama Radioheliograph. We find that both frequency dependent delays in MWs and energy dependent delays in HXRs are significant.Furthermore, MW emissions from the south source are delayed with respect to those from the north source at both 17 GHz and 34 GHz, but no significant delays are found in HXR emissions from the different sources at the same energies. To better understand all these long time delays, we derive the electron fluxes of different energies by fitting the observed HXR spectra with a single power-law thick-target model, and speculate that these delays might be related to an extended acceleration process. We further compare the time profile of a MW spectral index derived from 17 and 34 GHz fluxes with the flux densities, and find that the spectral index shows a strong anticorrelation with the HXR fluxes.
基金partly supported by RFBR projects 13-02-91165 and 15-32-21078MOST (973 program,2011CB811402)National Natural Science Foundation of China (11233008 and 11427803)
文摘From the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESS1) catalog we select events which have approximately the same GOES class (high C - low M or 500-1200 counts s-1 within the RHESSI 6-12 keV energy band), but with different maximal energies of detected hard X-rays. The selected events are subdivided into two groups: (1) flares with X-ray emissions observed by RHESSI up to only 50 keV and (2) flares with hard X-ray emission observed also above 50 keV. The main task is to understand observational peculiarities of these two flare groups. We use RHESSIX-ray data to obtain spectral and spa- tial information in order to find differences between selected groups. Spectra and images are analyzed in detail for six events (case study). For a larger number of samples (85 and 28 flares in the low-energy and high-energy groups respectively) we only make some generalizations. In spectral analysis we use the thick- target model for hard X-ray emission and one temperature assumption for thermal soft X-ray emission. RHESSI X-ray images are used for determination of flare region sizes. Although thermal and spatial prop- erties of these two groups of flares are not easily distinguishable, power law indices of hard X-rays show significant differences. Events from the high-energy group generally have a harder spectrum. Therefore, the efficiency of chromospheric evaporation is not sensitive to the hardness of nonthermal electron spectra but rather depends on the total energy flux of nonthermal electrons.
基金supported in part by the fund from Research Institute,Aoyama Gakuin University(R.Y.and A.B.)grant-in-aid from the Ministry of Education,Culture,Sports,Science and Technology(MEXT)of Japan,No.24.8344(Y.O.),No.24840036(M.S.)and No.22684012(A.B.)
文摘Synchrotron X-rays can be a useful tool to investigate electron accelera- tion at young supemova remnants (SNRs). At present, since the magnetic field con- figuration around the shocks of SNRs is uncertain, it is not clear whether electron acceleration is limited by SNR age, synchrotron cooling, or even escape from the ac- celeration region. We study whether the acceleration mechanism can be constrained by the cutoff shape of the electron spectrum around the maximum energy. We derive analytical formulae of the cutoff shape in each case where the maximum electron en- ergy is determined by SNR age, synchrotron cooling and escape from the shock. They are related to the energy dependence of the electron diffusion coefficient. Next, we discuss whether information on the cutoff shape can be provided by observations in the near future which will simply give the photon indices and the flux ratios in the soft and hard X-ray bands. We find that if the power-law index of the electron spectrum is independently determined by other observations, then we can constrain the cutoff shape by comparing theoretical predictions of the photon indices and/or the flux ratios with observed data which will be measured by NuSTAR and/or ASTRO-H. Such study is helpful in understanding the acceleration mechanism. In particular, it will supply another independent constraint on the magnetic field strength around the shocks of SNRs.
文摘Using data-driven algorithms to accurately forecast solar flares requires reliable data sets.The solar flare dataset is composed of many non-flaring samples with a small percentage of flaring samples.This is called the class imbalance problem in data mining tasks.The prediction model is sensitive to most classes of the original data set during training.Therefore,the class imbalance problem for building up the flare prediction model from observational data should be systematically discussed.Aiming at the problem of class imbalance,three strategies are proposed corresponding to the data set,loss function,and training process:TypeⅠresamples the training samples,including oversampling for the minority class,undersampling,or mixed sampling for the majority class.TypeⅡusually changes the decision-making boundary,assigning the majority and minority categories of prediction loss to different weights.TypeⅢassigns different weights to the training samples,the majority categories are assigned smaller weights,and the minority categories are assigned larger weights to improve the training process of the prediction model.The main work of this paper compares these imbalance processing methods when building a flare prediction model and tries to find the optimal strategy.Our results show that among these strategies,the performance of oversampling and sample weighting is better than other strategies in most parameters,and the generality of resampling and changing the decision boundary is better.
基金supported by the National Natural Science Foundation of China(Grant Nos.11973092,11790300,11790302,11729301 and12073081)the Strategic Priority Research Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15052200 and XDA15320301)+2 种基金supported by the Specialized Research Fund for State Key Laboratories and CAS Strategic Pioneer Program on Space Science(KLSA202003)The Laboratory No.is2010DP173032.supported by DLR(Grant No.50 QL 1701)。
文摘We report multi-wavelength observations of four solar flares on 2014 July 07.We firstly select these flares according to the soft X-ray(SXR)and extreme ultraviolet(EUV)emissions recorded by the Extreme Ultraviolet Variability Experiment and Geostationary Orbiting Environmental S atellites.Then their locations and geometries are identified from the full-disk images measured by the Atmospheric Imaging Assembly(AIA),and the time delays among the light curves in different channels are identified.The electron number densities are estimated using the differential emission measure method.We find that three of four flares show strong emissions in SXR channels and high temperature(>6 MK)EUV wavelengths during the impulsive phase,i.e.,AIA 131 A and 94 A,and then they emit peak radiation subsequently in the middle temperature(~0.6-3 MK)EUV channels.Moreover,they last for a long time and have smaller electron densities,which are probably driven by the interaction of hot diffuse flare loops.Only one flare emits radiation at almost the same time in all the observed wavelengths,lasts for a relatively short time,and has a larger electron density.It is also accompanied by a typeⅢradio burst.The bright emission at the EUV channel could be corresponding to the associated erupting filament.