AIM: To perform a systematic meta-analysis to in- vestigate the association between X-ray repair crosscomplementing group 1 (XRCC1) polymorphisms and hepatocellular carcinoma (HCC) risk. METHODS: Relevant studie...AIM: To perform a systematic meta-analysis to in- vestigate the association between X-ray repair crosscomplementing group 1 (XRCC1) polymorphisms and hepatocellular carcinoma (HCC) risk. METHODS: Relevant studies extracted from PubMed, Embase, Wanfang, VIP and the Chinese National Knowledge Infrastructure databases up to March 2012 were included in the study. Stata software, version 11.0, was used for the statistical analysis. The odds ratios (ORs) and 95% confidence interval (CI) of the XRCC1 polymorphisms in HCC patients were analyzed and compared with healthy controls. The meta-analysis was performed using fixed-effect or random-effect methods, depending on the absence or presence of significant heterogeneity. RESULTS: Eleven studies with 2075 HCC cases and 2604 controls met our eligibility criteria (four studies, 888 cases and 938 controls for Arg194Trp, four studies, 858 cases and 880 controls for Arg280His, and nine studies, 1845 cases and 2401 controls for Arg399Gln). The meta-analysis revealed no associations between the Arg194Trp and Arg399GIn polymorphisms of the XRCC1 gene and HCC risk under all contrast models (codominant, dominant and recessive models) in the overall analysis and sensitivity analysis (the studies with controls not in the Hardy-Weinberg equilibrium were excluded). For XRCC1 Arg280His polymorphism, the overall analysis revealed the significant associa- tion between the His/His genotype and the increased risk of HCC (His/His vs Arg/Arg model, OR: 1.96, 95% CI: 1.03-3.75, P = 0.04). However, sensitivity analysis showed an altered pattern of result and non-significant association (OR: 2.06, 95% CI: 0.67-6.25, P = 0.20). The heterogeneity hypothesis test did not reveal any heterogeneity, and Begg's and Egger's tests did not find any obvious publication bias. CONCLUSION: The XRCC1 Arg194Trp and Arg399GIn polymorphisms are not associated with HCC risk. More rigorous association studies are needed to verify the involvement ofXRCC1 Arg280His polymorphism in HCC susceptibility.展开更多
Objective: To estimate the relationship between genetic polymorphisms of X-ray repair cross- complementing group 1 (XRCC1) and the susceptibility to childhood acute lymphoblastic leukemia (ALL). Methods: Relevan...Objective: To estimate the relationship between genetic polymorphisms of X-ray repair cross- complementing group 1 (XRCC1) and the susceptibility to childhood acute lymphoblastic leukemia (ALL). Methods: Relevant case-control studies were enrolled in the meta-analysis. We applied Rev Man 4.2 software to pool raw data and test studies' heterogeneity and to calculate the incorporated odds ratio (OR) and 95% confidence interval (95% CI). Results: Our data showed that the OR for the Gln allele of the Arg399Gln polymorphism, compared with the Arg allele, was 1.35 (95% CI, 1.16-1.57; P〈0.0001) for childhood ALL patients. Similarly, the homozygous genotype Gln/Gln and heterozygous genotype Arg/Gln both significantly increased the risk of childhood ALL compared with the wild genotype Arg/Arg (OR =1.58; 95% CI, 1.13-2.21; P=0.008; OR =1.51; 95% CI, 1.21-1.87; P=0.0002). The dominant model of Arg399Gln was associated with childhood ALL risk (OR =1.54; 95% CI, 1.25-1.89; P〈0.0001). The ethnic subgroup analysis demonstrated that the Gln allele in all five ethnic groups was prone to be a risk factor for childhood ALL just with different degrees of correlation while Arg194Trp SNP showed a protective or risk factor or irrelevant thing in different races. Conclusions: XRCC1 399 polymorphism may increase the risk of childhood ALL. Different ethnic groups with some gene polymorphism have different disease risks.展开更多
The DNA damage, caused by cigarette smoking, can cause airway cell apoptosis and death, which may be associated with the development of chronic obstructive pulmonary disease (COPD). However, just 20%-30% smokers dev...The DNA damage, caused by cigarette smoking, can cause airway cell apoptosis and death, which may be associated with the development of chronic obstructive pulmonary disease (COPD). However, just 20%-30% smokers develop COPD, which suggests that different degrees of DNA repair cause different outcomes in smokers. X-ray repair cross-complementing group 1 (XRCC 1), a base excision repair protein, has multiple roles in repairing ROS-mediated, basal DNA damage and single-strand DNA breaks. The present study investigated the association between polymorphism in XRCC1 (Arg399Gln) and susceptibility of COPD. A total of 201 COPD cases and 309 controls were recruited and frequency-matched on age and sex. XRCC1 genotype was determined by PCR-restriction fragment length polymorphism analysis. Overall, compared with those with the XRCC1 Arg/Arg genotype, the risk for COPD had no significant difference among individuals with Trp/Trp genotype. However, after stratifying by smoking status, in former smokers, compared with those with the XRCC1 Arg/Arg genotype, the risk for COPD was significantly reduced among individuals with Trp/Trp genotype (adjusted OR=0.22, 95% CI 0.06-0.85, P=0.028); after stratifying by smoking exposure, in light smokers, compared with those with the XRCC1 Arg/Arg genotype, the risk for COPD was significantly reduced among individuals with Arg/Trp genotype and Trp/Trp genotype (adjusted OR=0.39, 95% CI 0.16=0.94, P=0.036; 0.24, 95% CI 0.07-0.79, P=0.019, respectively). In conclusion, XRCC1 Arg194Trp genotype is associated with a reduced risk of developing COPD among former and light smokers.展开更多
Background Cigarette-smoke induced DNA damage can cause airway cell apoptosis and death, which may be associated with the development of chronic obstructive pulmonary disease (COPD). However, only 20%-30% of smokers...Background Cigarette-smoke induced DNA damage can cause airway cell apoptosis and death, which may be associated with the development of chronic obstructive pulmonary disease (COPD). However, only 20%-30% of smokers develop COPD, suggesting that different degrees of DNA repair produce different outcomes in smokers, i.e., part of them develop COPD. We investigated the association between polymorphisms in DNA repair genes hOGG1 (Ser326Cys) and XRCC1 (Arg399GIn), alone or in combination, and susceptibility of COPD. Methods Altogether 201 COPD patients and 309 controls were recruited and frequency-matched on age and sex. hOGG1 and XRCC1 genotypes were determined by PCR-restriction fragment length polymorphism analysis. Results The risk of COPD was not significantly different among individuals with Ser/Cys and Cys/Cys genotypes compared with those with hOGG1 Ser/Ser genotype. The risk of COPD was not significantly different among individuals with Gin/Gin genotype compared with those with XRCC1 Arg/Arg genotype, but it was significantly elevated among individuals with Arg/GIn genotype (adjusted odds ratios (OR)=1.55, 95% confidence intervals (CI) 1.05-2.29, P=0.029). Assessment of smoking status in current smokers compared with those with hOGG1 Ser/Ser genotype revealed that the risk of COPD was significantly elevated among individuals with Cys/Cys genotype (adjusted OR=5.07, 95% CI 1.84-13.95, P=0.002). Compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Arg/GIn genotype (adjusted OR=2.77, 95% CI 1.52-5.07, P=-0.001). Assessment of smoking exposure in light smokers compared with those with hOGG1 Ser/Ser genotype showed that the risk of COPD was significantly elevated among individuals with Cys/Cys genotype (adjusted OR=4.02, 95% CI 1.05-16.80, P=0.042). Compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Gin/Gin genotype (adjusted OR=4.48, 95% CI 1.35-14.90, P=0.014). In heavy smokers compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Arg/GIn genotype (adjusted OR= 2.55, 95% CI 1.42-4.58, P=0.002). When hOGG1 Ser326Cys and XRCC1 Arg399GIn polymorphisms were evaluated together, compared with those with 0-1 of hOGG1 326Cys and XRCC1 399Gin alleles, the risk of COPD was significantly elevated among individuals with 3-4 of hOGG1 326Cys and XRCC1 399Gin alleles (adjusted OR=3.18, 95% CI 1.86-5.43, P=0.000). Assessment of smoking status and smoking exposure in current/light/heavy smokers showed that the risk of COPD was significantly elevated among individuals with 3-4 of hOGG1 326Cys and XRCC1 399Gin alleles (adjusted OR=8.32, 95% CI 3.59-19.27, P=0.000; OR=5.46, 95% CI 2.06-14.42, P=0.001; OR=2.93, 95% CI 1.43-6.02, P=0.003; respectively). Conclusions hOGG1 Ser326Cys and XRCC1 Arg399GIn polymorphisms are associated with the susceptibility to COPD. The risk of COPD is significantly elevated among current/light smokers with hOGG1 326Cys and XRCC1 399Gin.展开更多
基金Supported by International Science and Technology Cooperation Program of the Ministry of Science and Technology,No.010S2012ZR0058the National Basic Research Program of China,No. 2012CB526706+2 种基金the Innovation Program of Shanghai Municipal Education Commission,No.13ZZ060the Fund of Shanghai Municipal Health Bureau,No. 2008Y077the Special Program for Military Medicine,No. 2010JS15
文摘AIM: To perform a systematic meta-analysis to in- vestigate the association between X-ray repair crosscomplementing group 1 (XRCC1) polymorphisms and hepatocellular carcinoma (HCC) risk. METHODS: Relevant studies extracted from PubMed, Embase, Wanfang, VIP and the Chinese National Knowledge Infrastructure databases up to March 2012 were included in the study. Stata software, version 11.0, was used for the statistical analysis. The odds ratios (ORs) and 95% confidence interval (CI) of the XRCC1 polymorphisms in HCC patients were analyzed and compared with healthy controls. The meta-analysis was performed using fixed-effect or random-effect methods, depending on the absence or presence of significant heterogeneity. RESULTS: Eleven studies with 2075 HCC cases and 2604 controls met our eligibility criteria (four studies, 888 cases and 938 controls for Arg194Trp, four studies, 858 cases and 880 controls for Arg280His, and nine studies, 1845 cases and 2401 controls for Arg399Gln). The meta-analysis revealed no associations between the Arg194Trp and Arg399GIn polymorphisms of the XRCC1 gene and HCC risk under all contrast models (codominant, dominant and recessive models) in the overall analysis and sensitivity analysis (the studies with controls not in the Hardy-Weinberg equilibrium were excluded). For XRCC1 Arg280His polymorphism, the overall analysis revealed the significant associa- tion between the His/His genotype and the increased risk of HCC (His/His vs Arg/Arg model, OR: 1.96, 95% CI: 1.03-3.75, P = 0.04). However, sensitivity analysis showed an altered pattern of result and non-significant association (OR: 2.06, 95% CI: 0.67-6.25, P = 0.20). The heterogeneity hypothesis test did not reveal any heterogeneity, and Begg's and Egger's tests did not find any obvious publication bias. CONCLUSION: The XRCC1 Arg194Trp and Arg399GIn polymorphisms are not associated with HCC risk. More rigorous association studies are needed to verify the involvement ofXRCC1 Arg280His polymorphism in HCC susceptibility.
文摘Objective: To estimate the relationship between genetic polymorphisms of X-ray repair cross- complementing group 1 (XRCC1) and the susceptibility to childhood acute lymphoblastic leukemia (ALL). Methods: Relevant case-control studies were enrolled in the meta-analysis. We applied Rev Man 4.2 software to pool raw data and test studies' heterogeneity and to calculate the incorporated odds ratio (OR) and 95% confidence interval (95% CI). Results: Our data showed that the OR for the Gln allele of the Arg399Gln polymorphism, compared with the Arg allele, was 1.35 (95% CI, 1.16-1.57; P〈0.0001) for childhood ALL patients. Similarly, the homozygous genotype Gln/Gln and heterozygous genotype Arg/Gln both significantly increased the risk of childhood ALL compared with the wild genotype Arg/Arg (OR =1.58; 95% CI, 1.13-2.21; P=0.008; OR =1.51; 95% CI, 1.21-1.87; P=0.0002). The dominant model of Arg399Gln was associated with childhood ALL risk (OR =1.54; 95% CI, 1.25-1.89; P〈0.0001). The ethnic subgroup analysis demonstrated that the Gln allele in all five ethnic groups was prone to be a risk factor for childhood ALL just with different degrees of correlation while Arg194Trp SNP showed a protective or risk factor or irrelevant thing in different races. Conclusions: XRCC1 399 polymorphism may increase the risk of childhood ALL. Different ethnic groups with some gene polymorphism have different disease risks.
基金supported by a grant from National Natural Science Foundation of China (No.30570794)
文摘The DNA damage, caused by cigarette smoking, can cause airway cell apoptosis and death, which may be associated with the development of chronic obstructive pulmonary disease (COPD). However, just 20%-30% smokers develop COPD, which suggests that different degrees of DNA repair cause different outcomes in smokers. X-ray repair cross-complementing group 1 (XRCC 1), a base excision repair protein, has multiple roles in repairing ROS-mediated, basal DNA damage and single-strand DNA breaks. The present study investigated the association between polymorphism in XRCC1 (Arg399Gln) and susceptibility of COPD. A total of 201 COPD cases and 309 controls were recruited and frequency-matched on age and sex. XRCC1 genotype was determined by PCR-restriction fragment length polymorphism analysis. Overall, compared with those with the XRCC1 Arg/Arg genotype, the risk for COPD had no significant difference among individuals with Trp/Trp genotype. However, after stratifying by smoking status, in former smokers, compared with those with the XRCC1 Arg/Arg genotype, the risk for COPD was significantly reduced among individuals with Trp/Trp genotype (adjusted OR=0.22, 95% CI 0.06-0.85, P=0.028); after stratifying by smoking exposure, in light smokers, compared with those with the XRCC1 Arg/Arg genotype, the risk for COPD was significantly reduced among individuals with Arg/Trp genotype and Trp/Trp genotype (adjusted OR=0.39, 95% CI 0.16=0.94, P=0.036; 0.24, 95% CI 0.07-0.79, P=0.019, respectively). In conclusion, XRCC1 Arg194Trp genotype is associated with a reduced risk of developing COPD among former and light smokers.
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 30570794).
文摘Background Cigarette-smoke induced DNA damage can cause airway cell apoptosis and death, which may be associated with the development of chronic obstructive pulmonary disease (COPD). However, only 20%-30% of smokers develop COPD, suggesting that different degrees of DNA repair produce different outcomes in smokers, i.e., part of them develop COPD. We investigated the association between polymorphisms in DNA repair genes hOGG1 (Ser326Cys) and XRCC1 (Arg399GIn), alone or in combination, and susceptibility of COPD. Methods Altogether 201 COPD patients and 309 controls were recruited and frequency-matched on age and sex. hOGG1 and XRCC1 genotypes were determined by PCR-restriction fragment length polymorphism analysis. Results The risk of COPD was not significantly different among individuals with Ser/Cys and Cys/Cys genotypes compared with those with hOGG1 Ser/Ser genotype. The risk of COPD was not significantly different among individuals with Gin/Gin genotype compared with those with XRCC1 Arg/Arg genotype, but it was significantly elevated among individuals with Arg/GIn genotype (adjusted odds ratios (OR)=1.55, 95% confidence intervals (CI) 1.05-2.29, P=0.029). Assessment of smoking status in current smokers compared with those with hOGG1 Ser/Ser genotype revealed that the risk of COPD was significantly elevated among individuals with Cys/Cys genotype (adjusted OR=5.07, 95% CI 1.84-13.95, P=0.002). Compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Arg/GIn genotype (adjusted OR=2.77, 95% CI 1.52-5.07, P=-0.001). Assessment of smoking exposure in light smokers compared with those with hOGG1 Ser/Ser genotype showed that the risk of COPD was significantly elevated among individuals with Cys/Cys genotype (adjusted OR=4.02, 95% CI 1.05-16.80, P=0.042). Compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Gin/Gin genotype (adjusted OR=4.48, 95% CI 1.35-14.90, P=0.014). In heavy smokers compared with those with XRCC1 Arg/Arg genotype, the risk of COPD was significantly elevated among individuals with Arg/GIn genotype (adjusted OR= 2.55, 95% CI 1.42-4.58, P=0.002). When hOGG1 Ser326Cys and XRCC1 Arg399GIn polymorphisms were evaluated together, compared with those with 0-1 of hOGG1 326Cys and XRCC1 399Gin alleles, the risk of COPD was significantly elevated among individuals with 3-4 of hOGG1 326Cys and XRCC1 399Gin alleles (adjusted OR=3.18, 95% CI 1.86-5.43, P=0.000). Assessment of smoking status and smoking exposure in current/light/heavy smokers showed that the risk of COPD was significantly elevated among individuals with 3-4 of hOGG1 326Cys and XRCC1 399Gin alleles (adjusted OR=8.32, 95% CI 3.59-19.27, P=0.000; OR=5.46, 95% CI 2.06-14.42, P=0.001; OR=2.93, 95% CI 1.43-6.02, P=0.003; respectively). Conclusions hOGG1 Ser326Cys and XRCC1 Arg399GIn polymorphisms are associated with the susceptibility to COPD. The risk of COPD is significantly elevated among current/light smokers with hOGG1 326Cys and XRCC1 399Gin.