X-ray scattering is widely used in material structural characterizations.The weak scattering nature,however,makes it susceptible to background noise and can consequently render the final results unreliable.In this pap...X-ray scattering is widely used in material structural characterizations.The weak scattering nature,however,makes it susceptible to background noise and can consequently render the final results unreliable.In this paper,we report an iterative method to determine X-ray scattering background and demonstrate its feasibility by small angle X-ray scattering on gold nanoparticles.This method solely relies on the correct structural modeling of the sample to separate scattering signal from background in data fitting processes,which allows them to be immune from experimental uncertainties.The importance of accurate determination of the scaling factor for background subtraction is also illustrated.展开更多
The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X...The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.展开更多
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
High-resolution X-ray diffraction has been employed to investigate the diffuse scattering in a (0001) oriented GaN epitaxial film grown on sapphire substrate. The analysis reveals that defect clusters are present in...High-resolution X-ray diffraction has been employed to investigate the diffuse scattering in a (0001) oriented GaN epitaxial film grown on sapphire substrate. The analysis reveals that defect clusters are present in GaN films and their concentration increases as the density of threading dislocations increases. Meanwhile, the mean radius of these defect clus- ters shows a reverse tendency. This result is explained by the effect of clusters preferentially forming around dislocations, which act as effective sinks for the segregation of point defects. The electric mobility is found to decrease as the cluster concentration increases.展开更多
The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrou...The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrounding radiation flux is high.The shutter door will close when passing below an altitude threshold to protect against trapped particles in the Earth’s Van Allen Belts.Therefore,two radiation environments can be approximated based on the shutter door position:open and closed.The instrument background for the CCDs(Charge-Coupled Devices)that form the focal plane array of the SXI were evaluated for the two environments.Due to the correlation of the space environment with the solar cycle,the solar minima and maxima,the background was also evaluated at these two extremes.The results demonstrated that the highest instrument background will occur during solar minima due to the main contributing source being Galactic Cosmic Rays(GCRs).It was also found that the open background was highest for solar minima and that the closed background was highest during solar maxima.This is due to the radiation shutter door acting as a scattering centre and the changes in the energy flux distribution of the GCRs between the two solar extremes.展开更多
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch...Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.展开更多
The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially...The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially opened to users in March 2015,and since then,a series of technological innovations has been developed to optimize beamline performance,thereby significantly improving the data collection efficiency and broadening the application scope of biological small-angle X-ray scattering.BL19U2 is ideal for the high-throughput screening of weakly scattered proteins,protein assemblies,nucleic acids,inorganic nanomaterials,and organic drug molecules.This paper describes the design and overview of the BL19U2 beamline.Versatile sample environments at the experimental station and some recent scientific highlights are presented.展开更多
The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major stre...The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.展开更多
The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scatte...The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scattering (SAXS).The results show that the precipitates are only a few nanorneters for both alloys ageing even at higher temperature of 160℃ for 72 h (4.44 and 5.82 nm, respectively). The maximum of the precipitate volume fraction increases with in creasing Zn content and is about 0.023-0.028 and 0.052-0.054, respectively. The coarsening of precipitate is consistent with LSW (Lifshitz-Slyozov-Wagner) model even at the initial stage where volume fraction is still varying.The activation energy of coarsening regime has been determined to be about 1.22±0.02 eV and 1.25±0.02 eV for alloys 7075 and 7055, respectively.展开更多
In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (S...In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.展开更多
Small angle X-ray scattering (SAXS) was used to study the effect of dissolved CO2 on the conformation of polystyrene (PS) in PS/tetrahydrofuran(THF) solution at 308.15 K and at pressures up to 3 MPa. The cloud pressur...Small angle X-ray scattering (SAXS) was used to study the effect of dissolved CO2 on the conformation of polystyrene (PS) in PS/tetrahydrofuran(THF) solution at 308.15 K and at pressures up to 3 MPa. The cloud pressure and the expansion curve of the solution were also determined. The dependence of the conformation on pressure was discussed.展开更多
Fluorine-free electrolytes have attracted great attention because of its low-cost and environmental friendliness. However, so far, little is known about the solution structures of these electrolytes. Here,we compare t...Fluorine-free electrolytes have attracted great attention because of its low-cost and environmental friendliness. However, so far, little is known about the solution structures of these electrolytes. Here,we compare the solvation phenomenon of sodium tetraphenylborate(NaBPh_(4)) salt dissolved in organic solvents of propylene carbonate(PC), 1,2-dimethoxyethane(DME), acetonitrile(ACN) and tetrahydrofuran(THF). Small-angle X-ray scattering(SAXS) reveals a unique two-peak structural feature in this saltconcentrated PC electrolyte, while solutions using other solvents only have one scattering peak.Molecular dynamics(MD) simulations further reveal that there are anion-based clusters in addition to the short-range charge ordering in the concentrated NaBPh4/PC electrolyte. Raman spectroscopy confirms the existence of considerable contact ion pairs(CIPs). This work emphasizes the importance of global and local structural analysis, which will provide valuable clues for understanding the structureperformance relationship of electrolytes.展开更多
The effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out ...The effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out at room temperature up to 35.7 and 40.3 GPa, respectively. At a pressure of about 20 GPa, both Raman spectra and X-ray diffraction results indicate that LiCuVO4 was transformed into a monoclinic phase, which remained stable up to at least 35.7 GPa. Upon release of pressure, the high-pressure phase returned to the initial phase. The pressure dependence of the volume of low pressure orthorhombic phase and high-pressure monoclinic phase were described by a second-order Birch-Murnaghan equation of state, which yielded bulk modulus values of B0 = 197 (5) and 232(8) GPa, respectively. The results support the empirical suggestion that the oxide spinels have similar bulk modulus around 200 GPa.展开更多
Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half m...Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half maximum, with an electron of γ0 = 10 initial energy, generates an ultrashort, pulsed radiation of 76 attoseconds with a photon wavelength of 2.5 nm in the backward direction. The scattered radiation generated by a highly relativistic electron has superior quality in terms of its pulse width and angular distribution in comparison to the one generated by lower relativistic energy electron.展开更多
Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scat- tering X-ray source are explored through numerical simulations based on the parameters of the SILEX-...Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scat- tering X-ray source are explored through numerical simulations based on the parameters of the SILEX-I laser system (800 nm, 30 fs, 300 TW) and the previous wakefield acceleration experimental results. The simulation results show that X-ray pulses with a duration of 30 fs and an emission angle of 50 mrad can be produced from such a source. Using the optimized electron parameters, X-ray pulses with better directivity and narrower energy spectra can be obtained. Besides the electron parameters, the laser parameters such as the wavelength, pulse duration, and spot size also affect the X-ray yield, the angular distribution, and the maximum photon energy, except the X-ray pulse duration which is slightly changed for the case of ultrafast laser-electron interaction.展开更多
Synchrotron microfocus small angle X-ray scattering was used to investigate the nanostructure and microscopic variation of eggshells. It uses a microbeam allowing the ability to probe interactions between the organic ...Synchrotron microfocus small angle X-ray scattering was used to investigate the nanostructure and microscopic variation of eggshells. It uses a microbeam allowing the ability to probe interactions between the organic and inorganic components at nanometer level and is ideal for mapping over small areas to obtain a detailed analysis of structural variations. Thin sections of eggshells were scanned from the shell membrane (inner) to the cuticle (outer) surface. The data collected was used to produce two-dimensional maps showing microscopic changes within the different layers of the eggshell. The structural alterations ap- parently could have implications at the macroscopic level of the resulting eggshell. As the organic matrix is embedded within the eggshell this may contribute to the variations observed in calcite crystal form and texture, Structural information obtained about a biomaterial at different length scales is important in relating the structure to its functional properties. This knowledge and the principles behind the formation of biomaterials could be used in the attempt of bioengineering new systems.展开更多
In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum al...In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys(7150 and 7085 Al alloys),are investigated by anomalous small-angle x-ray scattering(ASAXS) at various energies.The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side,while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge.Similar results are observed in the 7085 alloy in an aging process(120℃) by employing in-situ ASAXS measurements,indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min.In the aging process,the precipitate particles with an initial average size of ~ 8 ?A increase with aging time at an energy of 9.60 ke V,while the increase with a slower rate is observed at an energy of 9.65 ke V as near the Zn absorption edge.展开更多
Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has...Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and lowresolution experimental data using computer simulations. Small-angle x-ray scattering(SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin.展开更多
X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2...X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2 ns) heated titanium thin foil, was used as x-ray probe beam. The x-ray probe was then scattered by cold CH foam column of 1 g/cm^3 density. The scattered radiation at 90° was diffracted by polyethylene terephthalate (PET) crystal and recorded on x-ray charge-coupled device. Well-defined scattering spectra were obtained with good signal to noise ratio.展开更多
Highly oriented pyrolitic graphite (HOPG) has high X-ray diffraction efficiency due to its unique mosaic crystal structure, and thus is very suitable for its application to X-ray Thomson scattering measurement of so...Highly oriented pyrolitic graphite (HOPG) has high X-ray diffraction efficiency due to its unique mosaic crystal structure, and thus is very suitable for its application to X-ray Thomson scattering measurement of solid-density plasmas. In this article, by using the K-shell X-ray source from laser-produced Ti plasma, the properties of the HOPG spectrometer are characterized and compared with those of the flat Pentaerythritol (PET) spectrometer. The results show that the diffraction efficiency of the HOPG spectrometer under focusing condition is an order higher than that of the PET spectrometer, while the spectral resolution of the HOPG is about 320, high enough to be used in the measurement of X-ray Thomson scattering spectra.展开更多
基金supported by the National Natural Science Foundation of China(No.11375256)the Science and Technology Commission of Shanghai Municipality(No.14JC1493300)
文摘X-ray scattering is widely used in material structural characterizations.The weak scattering nature,however,makes it susceptible to background noise and can consequently render the final results unreliable.In this paper,we report an iterative method to determine X-ray scattering background and demonstrate its feasibility by small angle X-ray scattering on gold nanoparticles.This method solely relies on the correct structural modeling of the sample to separate scattering signal from background in data fitting processes,which allows them to be immune from experimental uncertainties.The importance of accurate determination of the scaling factor for background subtraction is also illustrated.
基金This work was supported by the National Key R&D Program of China(No.2020YFA0405802)the Shanghai Large Scientific Facilities Center.
文摘The construction of a new beamline,BL10U1,was completed at the Shanghai synchrotron radiation facility in 2020.This multipurpose beamline was designed to provide X-ray scattering techniques such as ultra-small-angle X-ray scattering(USAXS),small-angle X-ray scattering(SAXS),wide-angle X-ray scattering,and microfocus SAXS(μSAXS)for a broad user community.To realize fast time-resolved USAXS experiments,the beamline adopted an in-vacuum undulator with a total length of 1.6 m as the photon source.An in-house cryogenic-cooled double multilayer monochromator was installed to deliver a photon flux of approximately 10^(13) photons/s at a photon energy of 10 keV.The three-year successful operation of this beamline demonstrated that the monochromator operated smoothly,as expected.BL10U1 has three end stations in succession:USAXS end station,μSAXS end station,and end station for industrial applications.The minimum scattering vector q~0.0042 nm^(-1) at 10 keV can be achieved at the USAXS end station equipped with a 28 m-long and 1.8 m-diameter vacuum flight tube.At theμSAXS end station,a beam spot of less than 10×8μm was achieved for micro-SAXS experiments.In contrast,in situ experimental instruments up to 5 m high and 8 m wide can be mounted at the industrial application end station,which offers industrial scientists the opportunity to use their large industrial equipment.BL10U1 opens up a new capability to investigate phenomena such as non-equilibrium and dynamic processes of materials with a wide length scale from angstroms to micrometers with millisecond time resolution.In this paper,we also report beamline design considerations and commissioning results.
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
文摘High-resolution X-ray diffraction has been employed to investigate the diffuse scattering in a (0001) oriented GaN epitaxial film grown on sapphire substrate. The analysis reveals that defect clusters are present in GaN films and their concentration increases as the density of threading dislocations increases. Meanwhile, the mean radius of these defect clus- ters shows a reverse tendency. This result is explained by the effect of clusters preferentially forming around dislocations, which act as effective sinks for the segregation of point defects. The electric mobility is found to decrease as the cluster concentration increases.
文摘The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrounding radiation flux is high.The shutter door will close when passing below an altitude threshold to protect against trapped particles in the Earth’s Van Allen Belts.Therefore,two radiation environments can be approximated based on the shutter door position:open and closed.The instrument background for the CCDs(Charge-Coupled Devices)that form the focal plane array of the SXI were evaluated for the two environments.Due to the correlation of the space environment with the solar cycle,the solar minima and maxima,the background was also evaluated at these two extremes.The results demonstrated that the highest instrument background will occur during solar minima due to the main contributing source being Galactic Cosmic Rays(GCRs).It was also found that the open background was highest for solar minima and that the closed background was highest during solar maxima.This is due to the radiation shutter door acting as a scattering centre and the changes in the energy flux distribution of the GCRs between the two solar extremes.
基金supported by the U.S.National Science Foundation (2208972,2120559,and 2323117)
文摘Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.
基金the National Natural Science Foundation of China(Nos.U1832215 and U1832144)the Youth Innovation Promotion Association of Chinese Academy Science(No.2017319).
文摘The BL19U2 at the Shanghai Synchrotron Radiation Facility is a small-angle X-ray scattering beamline dedicated to structural studies pertaining to biological macromolecules in solution.The beamline has been officially opened to users in March 2015,and since then,a series of technological innovations has been developed to optimize beamline performance,thereby significantly improving the data collection efficiency and broadening the application scope of biological small-angle X-ray scattering.BL19U2 is ideal for the high-throughput screening of weakly scattered proteins,protein assemblies,nucleic acids,inorganic nanomaterials,and organic drug molecules.This paper describes the design and overview of the BL19U2 beamline.Versatile sample environments at the experimental station and some recent scientific highlights are presented.
基金financially supported by the National Natural Science Foundation of China(No.51004018)
文摘The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.
基金This research was supported by the National Key Fun-damental Research Project of China(No.G19990649)National“863”High Technology Program of China(No.2001 A A332030).
文摘The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scattering (SAXS).The results show that the precipitates are only a few nanorneters for both alloys ageing even at higher temperature of 160℃ for 72 h (4.44 and 5.82 nm, respectively). The maximum of the precipitate volume fraction increases with in creasing Zn content and is about 0.023-0.028 and 0.052-0.054, respectively. The coarsening of precipitate is consistent with LSW (Lifshitz-Slyozov-Wagner) model even at the initial stage where volume fraction is still varying.The activation energy of coarsening regime has been determined to be about 1.22±0.02 eV and 1.25±0.02 eV for alloys 7075 and 7055, respectively.
文摘In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.
基金the National Basic Research Project-Macromolecular Condensed State the National Natural Science Foundation of China !(296330
文摘Small angle X-ray scattering (SAXS) was used to study the effect of dissolved CO2 on the conformation of polystyrene (PS) in PS/tetrahydrofuran(THF) solution at 308.15 K and at pressures up to 3 MPa. The cloud pressure and the expansion curve of the solution were also determined. The dependence of the conformation on pressure was discussed.
基金supported as part of the Joint Center for Energy Storage Research,an Energy Innovation Hub funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciencesthe supported by U.S.National Science Foundation(Grant No.2120559)。
文摘Fluorine-free electrolytes have attracted great attention because of its low-cost and environmental friendliness. However, so far, little is known about the solution structures of these electrolytes. Here,we compare the solvation phenomenon of sodium tetraphenylborate(NaBPh_(4)) salt dissolved in organic solvents of propylene carbonate(PC), 1,2-dimethoxyethane(DME), acetonitrile(ACN) and tetrahydrofuran(THF). Small-angle X-ray scattering(SAXS) reveals a unique two-peak structural feature in this saltconcentrated PC electrolyte, while solutions using other solvents only have one scattering peak.Molecular dynamics(MD) simulations further reveal that there are anion-based clusters in addition to the short-range charge ordering in the concentrated NaBPh4/PC electrolyte. Raman spectroscopy confirms the existence of considerable contact ion pairs(CIPs). This work emphasizes the importance of global and local structural analysis, which will provide valuable clues for understanding the structureperformance relationship of electrolytes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074089 and 11004073)the National Basic Research Program of China (Grant No. 2011CB808200)CHESS is supported by NSF and NIH/NIGMS through a NSF award DMR-0936384
文摘The effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out at room temperature up to 35.7 and 40.3 GPa, respectively. At a pressure of about 20 GPa, both Raman spectra and X-ray diffraction results indicate that LiCuVO4 was transformed into a monoclinic phase, which remained stable up to at least 35.7 GPa. Upon release of pressure, the high-pressure phase returned to the initial phase. The pressure dependence of the volume of low pressure orthorhombic phase and high-pressure monoclinic phase were described by a second-order Birch-Murnaghan equation of state, which yielded bulk modulus values of B0 = 197 (5) and 232(8) GPa, respectively. The results support the empirical suggestion that the oxide spinels have similar bulk modulus around 200 GPa.
基金The project supported by National Natural Science Foundation of China under Grant No, 10375083 and the Special Foundation for State Key Basic Research Program of China under Grant No. TG1999075206-2
文摘Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half maximum, with an electron of γ0 = 10 initial energy, generates an ultrashort, pulsed radiation of 76 attoseconds with a photon wavelength of 2.5 nm in the backward direction. The scattered radiation generated by a highly relativistic electron has superior quality in terms of its pulse width and angular distribution in comparison to the one generated by lower relativistic energy electron.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10902010 and 10975121)the Foundation of China Academy of Engineering Physics(CAEP)(Grant No.2009A0102003)the Foundation of Laboratory of Science and Technology on Plasma Physics,RCLF,CAEP(Grant No.9140C680305120C68252)
文摘Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scat- tering X-ray source are explored through numerical simulations based on the parameters of the SILEX-I laser system (800 nm, 30 fs, 300 TW) and the previous wakefield acceleration experimental results. The simulation results show that X-ray pulses with a duration of 30 fs and an emission angle of 50 mrad can be produced from such a source. Using the optimized electron parameters, X-ray pulses with better directivity and narrower energy spectra can be obtained. Besides the electron parameters, the laser parameters such as the wavelength, pulse duration, and spot size also affect the X-ray yield, the angular distribution, and the maximum photon energy, except the X-ray pulse duration which is slightly changed for the case of ultrafast laser-electron interaction.
文摘Synchrotron microfocus small angle X-ray scattering was used to investigate the nanostructure and microscopic variation of eggshells. It uses a microbeam allowing the ability to probe interactions between the organic and inorganic components at nanometer level and is ideal for mapping over small areas to obtain a detailed analysis of structural variations. Thin sections of eggshells were scanned from the shell membrane (inner) to the cuticle (outer) surface. The data collected was used to produce two-dimensional maps showing microscopic changes within the different layers of the eggshell. The structural alterations ap- parently could have implications at the macroscopic level of the resulting eggshell. As the organic matrix is embedded within the eggshell this may contribute to the variations observed in calcite crystal form and texture, Structural information obtained about a biomaterial at different length scales is important in relating the structure to its functional properties. This knowledge and the principles behind the formation of biomaterials could be used in the attempt of bioengineering new systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11005143,11405259,and 51274046)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China(Grant No.[2014]1685)
文摘In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys(7150 and 7085 Al alloys),are investigated by anomalous small-angle x-ray scattering(ASAXS) at various energies.The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side,while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge.Similar results are observed in the 7085 alloy in an aging process(120℃) by employing in-situ ASAXS measurements,indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min.In the aging process,the precipitate particles with an initial average size of ~ 8 ?A increase with aging time at an energy of 9.60 ke V,while the increase with a slower rate is observed at an energy of 9.65 ke V as near the Zn absorption edge.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2013CB910203 and 2011CB911104)the National Natural Science Foundation of China(Grant No.31270760)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB08030102)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20113402120013)
文摘Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and lowresolution experimental data using computer simulations. Small-angle x-ray scattering(SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin.
基金supported by National Natural Science Foundation of China(Nos.11105147 and 11175197)the China Postdoctoral Science Foundation(Nos.20100480690,201104333)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Open Fund of the State Key Laboratory of High Field Laser Physics(SIOM)
文摘X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2 ns) heated titanium thin foil, was used as x-ray probe beam. The x-ray probe was then scattered by cold CH foam column of 1 g/cm^3 density. The scattered radiation at 90° was diffracted by polyethylene terephthalate (PET) crystal and recorded on x-ray charge-coupled device. Well-defined scattering spectra were obtained with good signal to noise ratio.
基金supported by National Natural Science Foundation of China(Nos.11175197)CAS Innovative Project of China(KJCX2-YW-N36)Ministry of Education of China(IRT1190)
文摘Highly oriented pyrolitic graphite (HOPG) has high X-ray diffraction efficiency due to its unique mosaic crystal structure, and thus is very suitable for its application to X-ray Thomson scattering measurement of solid-density plasmas. In this article, by using the K-shell X-ray source from laser-produced Ti plasma, the properties of the HOPG spectrometer are characterized and compared with those of the flat Pentaerythritol (PET) spectrometer. The results show that the diffraction efficiency of the HOPG spectrometer under focusing condition is an order higher than that of the PET spectrometer, while the spectral resolution of the HOPG is about 320, high enough to be used in the measurement of X-ray Thomson scattering spectra.