Energy output and heating effects are essential for vapor-liquid fuel/air cloud detonation in the fuel-air explosive(FAE) applications or explosion accidents. The purpose of this study is to examine the dynamic large-...Energy output and heating effects are essential for vapor-liquid fuel/air cloud detonation in the fuel-air explosive(FAE) applications or explosion accidents. The purpose of this study is to examine the dynamic large-size flame behavior, shock wave propagation law, and instantaneous thermal field generated by unconfined vapor-liquid propylene oxide(PO)/air cloud detonation. Based on computational fluid dynamics(CFD) and combustion theory, a numerical simulation is used to study the detonation process of a PO/air cloud produced by a double-event fuel-air explosive(DEFAE) of 2.16 kg. The large-scale flame behavior is characterized. The flame initially spreads radially and laterally in a wing shape. Subsequently,the developed flame increases with a larger aspect ratio. Moreover, the propagation laws of shock waves at different heights are discussed. The peak pressure of 1.3 m height level with a stepwise decline is obviously different from that of the ground with an amplitude of reversed ’N’ shape. In the vast majority of the first 6.9 m, the destructive effect of the shock wave near the ground is greater than that of the shock wave at 1.3 m height. Furthermore, the dynamic instantaneous isothermal field is demonstrated.The scaling relationship of various isotherms in the instantaneous thermal field with the flame and initial cloud is summarized. The comprehensive numerical model used in this study can be applied to determine the overpressure and temperature distribution in the entire fuel/air cloud detonation field,providing guidance for assessing the extent of damage caused by DEFAE detonation.展开更多
Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SE...Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SEM)are employed to visualize and quantify morphological evolution characteristics of fractures in coal after LN2 thermal shocking treatments.LN2 thermal shocking leads to a denser fracture network than its original state with coal porosity growth rate increasing up to 183.3%.The surface porosity of theμCT scanned layers inside the coal specimen is influenced by LN2 thermal shocking which rises from 18.76%to 215.11%,illustrating the deformation heterogeneity of coal after LN2 thermal shocking.The cracking effect of LN2 thermal shocking on the surface of low porosity is generally more effective than that of high surface porosity,indicating the applicability of LN2 thermal shocking on low-permeability CBM reservoir stimulation.The characteristics of SEM scanned coal matrix in the coal powder and the coal block after the LN2 thermal shocking presented a large amount of deep and shallow progressive scratch layers,fracture variation diversity(i.e.extension,propagation,connectivity,irregularity)on the surface of the coal block and these were the main reasons leading to the decrease of the uniaxial compressive strength of the coal specimen.展开更多
The behaviours of ionization and shock propagation in radiatively heated material is crucial for the understanding of indirect drive inertial confinement fusion as well as some astrophysics phenomena. In this work, ra...The behaviours of ionization and shock propagation in radiatively heated material is crucial for the understanding of indirect drive inertial confinement fusion as well as some astrophysics phenomena. In this work, radiation field with a peak temperature of up to 155 eV was generated in a gold cavity heated by four laser beams on the SG-II laser system and was used to irradiate a plastic foam cylinder at one end. The radiatively ablated foam cylinder was then backlighted side-on by x-ray from a laser-irradiated Ti disk. By observing the transmission decrease due to the shock compression of the foam cylinder, the trajectories of shock front were measured, and from the onset of the intense thermal emission from the side of the cylinder, the propagations of the ionization front were also observed on the same shot. The experimental measurements were compared to predictions of the radiation hydrodynamics code Multi-1D and reasonable agreements were found.展开更多
Micro-sized copper powder(99.95%;O≤0.3)has been shock-processed with explosives of high detonation velocities of the order of 7.5 km/s to observe the structural and microstructural sub-strengthening.Axisymmetric shoc...Micro-sized copper powder(99.95%;O≤0.3)has been shock-processed with explosives of high detonation velocities of the order of 7.5 km/s to observe the structural and microstructural sub-strengthening.Axisymmetric shock-consolidation technique has been used to obtain conglomerates of granular Cu.The technique involves the cylindrical compaction system wherein the explosive-charge is in direct proximity with the powder whereas the other uses indirect shock pressure with die-plunger geometry.Numeric simulations have been performed on with Eulerian code dynamics.The simulated results show a good agreement with the experimental observation of detonation parameters like detonation velocity,pressure,particle velocity and shock pressure in the reactive media.A pin contactor method has been utilized to calculate the detonation pressure experimentally.Wide angled x-ray diffraction studies reveal that the crystalline structure(FCC)of the shocked specimen matches with the un-shocked specimen.Field emissive scanning electron microscopic examination of the compacted specimens show a good sub-structural strengthening and complement the theoretical considerations.Laser diffraction based particle size analyzer also points towards the reduced particle size of the shock-processed specimen under high detonation velocities.Micro-hardness tests conducted under variable loads of 0.1 kg,0.05 kg and 0.025 kg force with diamond indenter optical micrographs indicate a high order of micro-hardness of the order of 159 Hv.Nitrogen pycnometry used for the density measurement of the compacts shows that a compacted density of the order of 99.3%theoretical mean density has been achieved.展开更多
基金supported by the National Natural Science Foundation of China ( Grant No. 11972089)。
文摘Energy output and heating effects are essential for vapor-liquid fuel/air cloud detonation in the fuel-air explosive(FAE) applications or explosion accidents. The purpose of this study is to examine the dynamic large-size flame behavior, shock wave propagation law, and instantaneous thermal field generated by unconfined vapor-liquid propylene oxide(PO)/air cloud detonation. Based on computational fluid dynamics(CFD) and combustion theory, a numerical simulation is used to study the detonation process of a PO/air cloud produced by a double-event fuel-air explosive(DEFAE) of 2.16 kg. The large-scale flame behavior is characterized. The flame initially spreads radially and laterally in a wing shape. Subsequently,the developed flame increases with a larger aspect ratio. Moreover, the propagation laws of shock waves at different heights are discussed. The peak pressure of 1.3 m height level with a stepwise decline is obviously different from that of the ground with an amplitude of reversed ’N’ shape. In the vast majority of the first 6.9 m, the destructive effect of the shock wave near the ground is greater than that of the shock wave at 1.3 m height. Furthermore, the dynamic instantaneous isothermal field is demonstrated.The scaling relationship of various isotherms in the instantaneous thermal field with the flame and initial cloud is summarized. The comprehensive numerical model used in this study can be applied to determine the overpressure and temperature distribution in the entire fuel/air cloud detonation field,providing guidance for assessing the extent of damage caused by DEFAE detonation.
基金Project(2017XKQY012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Thermal shocking effect occurs when the coalbed methane(CBM)reservoirs meet liquid nitrogen(LN2)of extremely low temperature.In this study,3D via X-ray microcomputer tomography(μCT)and scanning electron microscope(SEM)are employed to visualize and quantify morphological evolution characteristics of fractures in coal after LN2 thermal shocking treatments.LN2 thermal shocking leads to a denser fracture network than its original state with coal porosity growth rate increasing up to 183.3%.The surface porosity of theμCT scanned layers inside the coal specimen is influenced by LN2 thermal shocking which rises from 18.76%to 215.11%,illustrating the deformation heterogeneity of coal after LN2 thermal shocking.The cracking effect of LN2 thermal shocking on the surface of low porosity is generally more effective than that of high surface porosity,indicating the applicability of LN2 thermal shocking on low-permeability CBM reservoir stimulation.The characteristics of SEM scanned coal matrix in the coal powder and the coal block after the LN2 thermal shocking presented a large amount of deep and shallow progressive scratch layers,fracture variation diversity(i.e.extension,propagation,connectivity,irregularity)on the surface of the coal block and these were the main reasons leading to the decrease of the uniaxial compressive strength of the coal specimen.
基金supported by the Science and Technology Fund of the China Academy of Engineering Physics (Grant No. 2007B08003)
文摘The behaviours of ionization and shock propagation in radiatively heated material is crucial for the understanding of indirect drive inertial confinement fusion as well as some astrophysics phenomena. In this work, radiation field with a peak temperature of up to 155 eV was generated in a gold cavity heated by four laser beams on the SG-II laser system and was used to irradiate a plastic foam cylinder at one end. The radiatively ablated foam cylinder was then backlighted side-on by x-ray from a laser-irradiated Ti disk. By observing the transmission decrease due to the shock compression of the foam cylinder, the trajectories of shock front were measured, and from the onset of the intense thermal emission from the side of the cylinder, the propagations of the ionization front were also observed on the same shot. The experimental measurements were compared to predictions of the radiation hydrodynamics code Multi-1D and reasonable agreements were found.
基金Defence Research and Development Organization(DRDO),India,for Grant-in-aid Project No.ERIP/ER/0703665/M/01/1044the University Grants Commission(UGC-New Delhi),India,for providing Research Fellowship No.F.4-1/2006(BSR)/11-08/2008.
文摘Micro-sized copper powder(99.95%;O≤0.3)has been shock-processed with explosives of high detonation velocities of the order of 7.5 km/s to observe the structural and microstructural sub-strengthening.Axisymmetric shock-consolidation technique has been used to obtain conglomerates of granular Cu.The technique involves the cylindrical compaction system wherein the explosive-charge is in direct proximity with the powder whereas the other uses indirect shock pressure with die-plunger geometry.Numeric simulations have been performed on with Eulerian code dynamics.The simulated results show a good agreement with the experimental observation of detonation parameters like detonation velocity,pressure,particle velocity and shock pressure in the reactive media.A pin contactor method has been utilized to calculate the detonation pressure experimentally.Wide angled x-ray diffraction studies reveal that the crystalline structure(FCC)of the shocked specimen matches with the un-shocked specimen.Field emissive scanning electron microscopic examination of the compacted specimens show a good sub-structural strengthening and complement the theoretical considerations.Laser diffraction based particle size analyzer also points towards the reduced particle size of the shock-processed specimen under high detonation velocities.Micro-hardness tests conducted under variable loads of 0.1 kg,0.05 kg and 0.025 kg force with diamond indenter optical micrographs indicate a high order of micro-hardness of the order of 159 Hv.Nitrogen pycnometry used for the density measurement of the compacts shows that a compacted density of the order of 99.3%theoretical mean density has been achieved.