The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging...The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development.展开更多
In recent years, studies have demonstrated that biophoton is a medium for the transmission and processing of neural information. However, such studies were mainly carried out by using brain slices combined with biopho...In recent years, studies have demonstrated that biophoton is a medium for the transmission and processing of neural information. However, such studies were mainly carried out by using brain slices combined with biophoton imaging technology, while there are few reports on <i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> brain biophoton imaging. In this study, the ultraweak biophoton imaging system (UBIS) was employed to carry out an </span><i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> biophoton imaging for the whole brain of mice. It was found that the biophoton emission of whole brain in the slight</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ly</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> anesthetized mice was significantly higher than that of the background, suggesting that the brain of living mouse emits a certain intensity of stable biophotons. The biophoton imaging established in this study for the </span><i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> mouse whole brain may provide a new technical method for further study of the relationship between the biophoton and brain functions, and give new ideas for developing diagnostic method of neuropsychiatric diseases.</span></span></span></span></span>展开更多
This research article introduces and explores the concept of a hybrid prism, which combines the properties of a lens and a reflective prism, designed for optical systems that operate in different spectral ranges of el...This research article introduces and explores the concept of a hybrid prism, which combines the properties of a lens and a reflective prism, designed for optical systems that operate in different spectral ranges of electromagnetic waves. The hybrid prism allows for precise focusing of light rays in a glass body and X-rays in a vacuum, enabling it to serve as an objective in various optical systems for imaging objects. The article delves into the structure and working principles of the hybrid prism, discussing its potential applications, including as an intraocular prism for macular degeneration, a lidar system for vehicle navigation, and objectives for cameras, telescopes, microscopes, X-ray devices, and X-ray microscopes. The revolutionary hybrid prism unlocks precise imaging of light and X-rays, reshaping optical systems and enabling groundbreaking applications.展开更多
透射电子显微镜(transmission electron microscope,TEM)具有超高的空间分辨率,是化学、材料科学、物理学、生物科学等领域最重要的研究手段之一.影响TEM空间分辨率的因素众多,不仅包括电镜自身结构和成像原理等,还有样品性质等原因.为...透射电子显微镜(transmission electron microscope,TEM)具有超高的空间分辨率,是化学、材料科学、物理学、生物科学等领域最重要的研究手段之一.影响TEM空间分辨率的因素众多,不仅包括电镜自身结构和成像原理等,还有样品性质等原因.为系统且全面地了解TEM分辨率的涵义、原理与应用,本文通过回顾TEM空间分辨率的发展历史,从理论上厘清了TEM空间分辨率的概念、物理涵义、影响因素和适用范围;从电镜装置角度,分别概述了电子枪、磁透镜、图像探测器和电镜内外部环境对空间分辨率的影响规律,以及单色器、像差校正器和新型图像探测器的发展现状;从实际应用角度,重点介绍了样品过厚、电子束损伤、积碳和原子振动等降低空间分辨率的作用机理及解决途径.本文可为非电子显微学研究者们正确使用TEM提供参考.展开更多
Fuel spray characteristics directly determine the formation pattern and quality of the fuel/air mixture in an engine,and thus affect the combustion process.For this reason,the improvement and optimization of fuel inje...Fuel spray characteristics directly determine the formation pattern and quality of the fuel/air mixture in an engine,and thus affect the combustion process.For this reason,the improvement and optimization of fuel injection systems is crucial to the development of engine technologies.The fuel jet breakup and atomization process is a complex liquid-gas two-phase turbulent flow system that has not yet been fully elucidated.Owing to the limitations of standard optical measurement techniques,the spray breakup mechanism and its interaction with the nozzle internal flow are still unclear.However,in recent years synchrotron radiation(SR)X-ray imaging technologies have been widely applied in engine fuel injection studies because of the higher energy and brilliance of third-generation SR light sources.This review provides a brief introduction to the development of SR technology and compares the critical parameters of the primary third-generation SR light sources available worldwide.The basic principles and applications of various X-ray imaging technologies with regard to nozzle internal structure measurements,visualization of in-nozzle flow characteristics and quantitative analyses of near-field spray transient dynamics are examined in detail.展开更多
基金financially supported by the National Natural Science Foundation of China (NSFC)(Nos.22175007 and 21975007)the National Natural Science Foundation for Outstanding Youth Foundation+1 种基金the Fundamental Research Funds for the Central Universities (No.YWF-22-K-101)the National Program for Support of Top-notch Young Professionals and the 111project (Nos.B14009)。
文摘The underwater X-ray imaging technology development is significant to subaqueous target reconnaissance/detection/identification, subfluvial archaeology,submerged resource exploration, etc. As the core of X-ray imaging detection, the scintillator has been plagued by inherent moisture absorption and decomposition, and strict requirements for seamless packaging and waterproofing.Here, we designed a manganese-doped two-dimensional(2D) perovskite scintillator modified by hydrophobic longchain organic amine through the combination of component and doping engineering. The modified perovskites show high water repellency that can be used as an underwater X-ray scintillator. X-ray images of aquatic organisms or other objects with a high spatial resolution of10 lp·mm^(-1) at a big view field(32 mm × 32 mm) were obtained by scintillation screen. This hydrophobic perovskite scintillator based on molecular design is of great promise in underwater X-ray nondestructive testing technology development.
文摘In recent years, studies have demonstrated that biophoton is a medium for the transmission and processing of neural information. However, such studies were mainly carried out by using brain slices combined with biophoton imaging technology, while there are few reports on <i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> brain biophoton imaging. In this study, the ultraweak biophoton imaging system (UBIS) was employed to carry out an </span><i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> biophoton imaging for the whole brain of mice. It was found that the biophoton emission of whole brain in the slight</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ly</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> anesthetized mice was significantly higher than that of the background, suggesting that the brain of living mouse emits a certain intensity of stable biophotons. The biophoton imaging established in this study for the </span><i><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;"> <i>vivo</i></span><span style="font-family:Verdana;"> mouse whole brain may provide a new technical method for further study of the relationship between the biophoton and brain functions, and give new ideas for developing diagnostic method of neuropsychiatric diseases.</span></span></span></span></span>
文摘This research article introduces and explores the concept of a hybrid prism, which combines the properties of a lens and a reflective prism, designed for optical systems that operate in different spectral ranges of electromagnetic waves. The hybrid prism allows for precise focusing of light rays in a glass body and X-rays in a vacuum, enabling it to serve as an objective in various optical systems for imaging objects. The article delves into the structure and working principles of the hybrid prism, discussing its potential applications, including as an intraocular prism for macular degeneration, a lidar system for vehicle navigation, and objectives for cameras, telescopes, microscopes, X-ray devices, and X-ray microscopes. The revolutionary hybrid prism unlocks precise imaging of light and X-rays, reshaping optical systems and enabling groundbreaking applications.
文摘透射电子显微镜(transmission electron microscope,TEM)具有超高的空间分辨率,是化学、材料科学、物理学、生物科学等领域最重要的研究手段之一.影响TEM空间分辨率的因素众多,不仅包括电镜自身结构和成像原理等,还有样品性质等原因.为系统且全面地了解TEM分辨率的涵义、原理与应用,本文通过回顾TEM空间分辨率的发展历史,从理论上厘清了TEM空间分辨率的概念、物理涵义、影响因素和适用范围;从电镜装置角度,分别概述了电子枪、磁透镜、图像探测器和电镜内外部环境对空间分辨率的影响规律,以及单色器、像差校正器和新型图像探测器的发展现状;从实际应用角度,重点介绍了样品过厚、电子束损伤、积碳和原子振动等降低空间分辨率的作用机理及解决途径.本文可为非电子显微学研究者们正确使用TEM提供参考.
基金This study was supported by the National Natural Science Foundation(U1832179)as a Key Project of the SSRF(2016-SSRF-ZD-004512).
文摘Fuel spray characteristics directly determine the formation pattern and quality of the fuel/air mixture in an engine,and thus affect the combustion process.For this reason,the improvement and optimization of fuel injection systems is crucial to the development of engine technologies.The fuel jet breakup and atomization process is a complex liquid-gas two-phase turbulent flow system that has not yet been fully elucidated.Owing to the limitations of standard optical measurement techniques,the spray breakup mechanism and its interaction with the nozzle internal flow are still unclear.However,in recent years synchrotron radiation(SR)X-ray imaging technologies have been widely applied in engine fuel injection studies because of the higher energy and brilliance of third-generation SR light sources.This review provides a brief introduction to the development of SR technology and compares the critical parameters of the primary third-generation SR light sources available worldwide.The basic principles and applications of various X-ray imaging technologies with regard to nozzle internal structure measurements,visualization of in-nozzle flow characteristics and quantitative analyses of near-field spray transient dynamics are examined in detail.