In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmet...In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmetric LCs,cool starspots on the components were employed.It is suggested that their fill-out degrees are f=12.0%(LX Lyn) and f=26.3%(V0853 Aur).At the same time,we found that LX Lyn is a W-type eclipsing binary(EB) with an orbital inclination of i=84°.88 and a mass ratio of q=2.31.V0853 Aur is also a W-type CEB with a mass ratio of q=2.77 and an orbital inclination of i= 79°.26.Based on all available times of light minimum,their orbital period changes are studied by using the O-C method.The O-C diagram of LX Lyn reveals a cyclic oscillation with a period of about 14.84 yr and an amplitude of 0.0019 days,which can be explained by the light-travel time effect(LTTE) due to the presence of a third body with a minimum mass of0.06M_⊙.For V0853 Aur,it is discovered that the O-C diagram of the system also shows a cyclic oscillation with a period of 9.64 yr and an amplitude of 0.03365 days.The cyclic oscillation of V0853 Aur can be attributed to the LTTE by means of a third body with a mass no less than 3.77M_⊙.The third body may play an important role in the formation and evolution of these systems.展开更多
The observations of varying broad iron lines during the state transition of the black hole X-ray binaries have been accumulating.In this work,the relation between the normalized intensity and the width of iron lines i...The observations of varying broad iron lines during the state transition of the black hole X-ray binaries have been accumulating.In this work,the relation between the normalized intensity and the width of iron lines is investigated,in order to understand better the variation of iron lines and possibly its connection to state transition.Considering the uncertainties due to ionization and illuminating X-rays,only the effects of geometry and gravity are taken into account.Three scenarios were studied,i.e.,the continuous disk model,the innermost annulus model,and the cloud model.As shown by our calculations,at given iron width,the line flux of the cloud model is smaller than that of the continuous disk model;while for the innermost annulus model,the width is almost unrelated with the flux.The range of the line strength depends on both the BH spin and the inclination of the disk.We then apply to the observation of MAXI J1631-479 by Nuclear Spectroscopic Telescope Array during its decay from the soft state to the intermediate state.We estimated the relative line strength and width according to the spectral fitting results in Xu et al.,and then compared with our theoretical width-flux relation.It was found that the cloud model was more favored.We further modeled the iron line profiles,and found that the cloud model can explain both the line profile and its variation with reasonable parameters.展开更多
The power law and reflection emission have been observed in the X-ray spectra of both black hole X-ray binaries(BHXRBs)and active galactic nuclei(AGNs),indicating a common physical origin of the X-ray emission from th...The power law and reflection emission have been observed in the X-ray spectra of both black hole X-ray binaries(BHXRBs)and active galactic nuclei(AGNs),indicating a common physical origin of the X-ray emission from these two types of sources.The relevant parameters describing the shape of both components and the potential correlation between these parameters can provide important clues on the geometric and physical properties of the disk and the corona in these sources.In this work,we present a positive correlation between the photon indexΓand the reflection strength R for the low-mass BHXRBs in the hard state by modeling NuSTAR data,which is qualitatively consistent with the previous studies.We compare our results with the predictions from different theoretical disk-corona models.We show that the RIT correlation found in this work seems to favor the moving corona model proposed by Beloborodov.Our results indicate that the coronal geometry varies significantly among BHXRBs.We further compare our results with that of AGNs.We find that the reflection strength R is smaller than unity in the hard state of BHXRBs,while it can be as large as~5 in AGNs,which implies that the variations of the disk-coronal geometry of AGNs are more vigorous than that of the BHXRBs in the hard state.展开更多
HH UMa and V1175 Her are two W UMa contact binary systems whose periods were reported as undergoing secular increase.In this paper,we improved their period analyses with a more extensive database of eclipse timings,fi...HH UMa and V1175 Her are two W UMa contact binary systems whose periods were reported as undergoing secular increase.In this paper,we improved their period analyses with a more extensive database of eclipse timings,finding that both periods show cyclic variation.The cyclic variation could be attributed to a Light Travel Time Effect induced by a third body.Both circular orbit and eccentric orbit cases were considered.For HH UMa,the cyclic variation with a period of around 20 yr has been detected,which may be caused by a third body with the mass larger than 0.23 M_(⊙).However,no parabolic variation was detected in its O−C curve,implying the balance of the mass transfer between the two components and the angular momentum loss from the binary system.As to V1175 Her,a long-term period increase superposed on a periodic oscillation was detected.The period increase with a rate of about dP/dt=2×10^(-7)day yr^(−1)indicates the mass transfer from the less massive component to its companion.The cyclic variation of about 7.5 yr could be caused by a hierarchical third body with a minimal mass exceeding 0.46M_(⊙)orbiting around the central binary.This mass is larger than that of the less massive component of the binary,which means that the secondary component was not replaced by the third body during early stellar interactions,implying that it keeps original dynamical information.By removing angular momentum from the central binary system,the tertiary component has played a significant role in the formation of contact binaries.展开更多
In this study,we determined the physical parameters of W UMa type contact binaries and their stability of mass transfer with different stellar mass ranges over a broad space by applying the basic dynamical evolution e...In this study,we determined the physical parameters of W UMa type contact binaries and their stability of mass transfer with different stellar mass ranges over a broad space by applying the basic dynamical evolution equations of the W UMa type contact binaries using accretor and donor masses between 0.079 and 2.79 M_(⊙).In these systems,we have studied the three subclasses of W UMa systems of A-,B-and W-type contact binaries using the initial and final mass ranges and we investigated different stellar and orbital parameters for the subclasses of W UMa systems.We examined the stability of the W UMa type contact binaries using the orbital parameters such as critical mass ratio,Roche lobe radius of the donor star and mass ratio of these systems.Thus,we computed the observed and calculated physical parameters of A-,B-and W-type W UMa systems.Moreover,we determined the combined and color temperatures to classify the three subclasses of the systems.Also,we presented the result of the internal stellar structure and evolution of W UMa type contact binaries by using the polytropic model.展开更多
The binary population in field stars and star clusters contributes to the formation of gravitational wave(GW)sources.However,the fraction of compact-object binaries(CBs),which is an important feature parameter of bina...The binary population in field stars and star clusters contributes to the formation of gravitational wave(GW)sources.However,the fraction of compact-object binaries(CBs),which is an important feature parameter of binary populations,is still difficult to measure and very uncertain.This paper predicts the fractions of important CBs and semi-compact object binaries(SCBs) making use of an advanced stellar population synthesis technique.A comparison with the result of N-body simulation is also presented.It is found that most CBs are formed within about 500 Myr after the starburst.The fractions of CBs and SCBs are demonstrated to correlate with stellar metallicity.The higher the metallicity becomes,the smaller the fraction of black hole binaries(BHBs),neutron star binaries(NSBs) and SCBs.This suggests that the GW sources of BHBs and NSBs are more likely to form in metal-poor environments.However,the fraction of black hole-neutron star binaries is shown to be larger for metalrich populations on average.展开更多
The binary systems consisting of a Be star and a white dwarf(Be WDs) are very interesting.They can originate from the binaries composed of a Be star and a subdwarf O or B star(Besd OBs),and they can merge into red gia...The binary systems consisting of a Be star and a white dwarf(Be WDs) are very interesting.They can originate from the binaries composed of a Be star and a subdwarf O or B star(Besd OBs),and they can merge into red giants via luminous red nova or can evolve into double WD potentially detected by the LISA mission.Using the method of population synthesis,we investigate the formation and the destiny of Be WDs,and discuss the effects of the metallicity(Z) and the common envelope evolution parameters.We find that Besd OBs are significant progenitors of Be WDs.About 30%(Z = 0.0001)-50%(Z = 0.02) of Be WDs come from Besd OBs.About 60%(Z = 0.0001)-70%(Z = 0.02) of Be WDs turn into red giants via a merger between a WD and a non-degenerated star.About 30%(Z = 0.0001)-40%(Z = 0.02) of Be WDs evolve into double WDs which are potential gravitational waves of the LISA mission at a frequency band between about 3 × 10^(-3)and 3 × 10^(-2)Hz.The common envelope evolution parameter introduces an uncertainty with a factor of about 1.3 on Be WD populations in our simulations.展开更多
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was f...This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively.展开更多
In dentistry, panoramic X-ray images are extensively used by dentists for tooth structure analysis and disease diagnosis. However, the manual analysis of these images is time-consuming and prone to misdiagnosis or ove...In dentistry, panoramic X-ray images are extensively used by dentists for tooth structure analysis and disease diagnosis. However, the manual analysis of these images is time-consuming and prone to misdiagnosis or overlooked. While deep learning techniques have been employed to segment teeth in panoramic X-ray images, accurate segmentation of individual teeth remains an underexplored area. In this study, we propose an end-to-end deep learning method that effectively addresses this challenge by employing an improved combinatorial loss function to separate the boundaries of adjacent teeth, enabling precise segmentation of individual teeth in panoramic X-ray images. We validate the feasibility of our approach using a challenging dataset. By training our segmentation network on 115 panoramic X-ray images, we achieve an intersection over union (IoU) of 86.56% for tooth segmentation and an accuracy of 65.52% in tooth counting on 87 test set images. Experimental results demonstrate the significant improvement of our proposed method in single tooth segmentation compared to existing methods.展开更多
EW-type eclipsing binaries(hereafter called EWs)are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope.Numerous EWs were discovered by several ...EW-type eclipsing binaries(hereafter called EWs)are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope.Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index(VSX)by 2017 March 13.7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified.Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations.In the paper,those EWs are cataloged and their properties are analyzed.The distributions of orbital period(P),effective temperature(T),gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(RV)are presented for these observed EW-type systems.It is shown that about 80.6% of sample stars have metallicity below zero,indicating that EW-type systems are old stellar populations.This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years.The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems.The correlations between orbital period and effective temperature,gravitational acceleration and metallicity are presented and their scatters are mainly caused by(i)the presence of third bodies and(ii)sometimes wrongly determined periods.It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods.It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities.This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution are mainly driven by angular momentum loss via magnetic braking.展开更多
We have investigated the relation between the orbital period P<SUB>orb</SUB> and the spin period P<SUB>s</SUB> of neutron stars in OB/X-ray binaries. By simulating the time-development of the m...We have investigated the relation between the orbital period P<SUB>orb</SUB> and the spin period P<SUB>s</SUB> of neutron stars in OB/X-ray binaries. By simulating the time-development of the mass loss rate and radius expansion of a 20M<SUB>☉</SUB> donor star, we have calculated the detailed spin evolution of the neutron star before steady wind accretion occurs (that is, when the break spin period is reached), or when the OB star begins evolving off the main sequence or has filled its Roche lobe. Our results are compatible with the observations of OB/X-ray binaries. We find that in relatively narrow systems with orbital periods less than tens of days, neutron stars with initial magnetic field B<SUB>0</SUB> stronger than about 3×10<SUP>12</SUP> G can reach the break spin period to allow steady wind accretion in the main sequence time, whereas neutron stars with B<SUB>0</SUB> < 3×10<SUP>12</SUP> G and/or in wide systems would still be in one of the pulsar, rapid rotator or propeller phases when the companion evolves off the main sequence or fills its Roche lobe. Our results may help understand the various characteristics of the observed OB/neutron star binaries along with their distributions in the P<SUB>s</SUB>-P<SUB>orb</SUB> diagram.展开更多
Eclipsing binaries are among the most important sources of information on stellar parameters like radii,masses,luminosities,etc.We present the analysis of six W UMa systems discovered in the Large Magellanic Cloud usi...Eclipsing binaries are among the most important sources of information on stellar parameters like radii,masses,luminosities,etc.We present the analysis of six W UMa systems discovered in the Large Magellanic Cloud using the Wilson-Devinney method.展开更多
Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnet...Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnetars are in binaries has not been excluded. In this work, we perform spin evolution of neutron stars with different magnetic fields in wind-fed high-mass X-ray binaries and compare the spin period distribution with observations, aiming to find magnetars in binaries. Our simulation shows that some of the neutron stars, which have long spin periods or are in widely-separated systems, need strong magnetic fields to explain their spin evolution. This implies that there are probably magnetars in high-mass X-ray binaries. Moreover, this can further provide a theoretical basis for some unclear astronomical phenomena, such as the possible origin of periodic fast radio bursts from magnetars in binary systems.展开更多
New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn...New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric.Therefore,a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa.At the same time,we added a third light to the photometric solution of FP Lyn for the final result.The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn,q = 1.075 and f = 4.6% for FV CVn,and q = 3.623 and f = 10.7% for V354 UMa respectively.The investigations of orbital period for these three systems indicate that the periods are variable.FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 ×10^-7 dyr^-1 and dp/dt = 7.70 ×10^-7 dyr^-1 respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component.In addition,some variable components were discovered for FV CVn,including a rate of dp/dt =-1.13 ×10^-6 dyr^-1 accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively.The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.展开更多
Using the apparent correlation of luminosity(L;) versus displacement(R) of high mass X-ray binaries(HMXBs),we aim to constrain the common envelope(CE) mechanism, which is vital in the formation and evolution of compac...Using the apparent correlation of luminosity(L;) versus displacement(R) of high mass X-ray binaries(HMXBs),we aim to constrain the common envelope(CE) mechanism, which is vital in the formation and evolution of compact binaries. We find that under the assumption of the γ-algorithm, the apparent correlation can also be reconstructed generally within a reasonable range of key parameters adopted, though the population of HMXBs is distinct with that in the canonical αCE-formalism. We compare the spatial distribution of HMXBs under the two CE mechanisms, and suggest the difference in L;versus R distribution may provide an additional clue for the study of the CE phase and to discriminate between CE models.展开更多
We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curv...We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curves of seven pulsars: four HMXBPs, two MSBPs and the ultraluminous X-ray pulsar M82 X-2. We discuss the physics of their flaring activities or lack thereof, paying special attention to their emission properties when they are found on the propeller line, inside the Corbet gap or near the light-cylinder barrier. We provide guiding principles for future interpretations of faint X-ray observations, as well as a method of constraining the propeller lines and the dipolar surface magnetic fields of pulsars using a variety of quiescent states. In the process, we clarify some disturbing inaccuracies that have made their way into the published literature.展开更多
We present photometric observations in Sloan filters g′, i′of the eclipsing W UMa stars USNOA2.0 1350-17365531, V471 Cas, V479 Lac and V560 Lac. The sinusoidal-like O-C diagram of V471 Cas indicates the presence of ...We present photometric observations in Sloan filters g′, i′of the eclipsing W UMa stars USNOA2.0 1350-17365531, V471 Cas, V479 Lac and V560 Lac. The sinusoidal-like O-C diagram of V471 Cas indicates the presence of a third body with mass 0.12 M_⊙(a red dwarf) at distance 897 R_⊙. The O-C diagram of V479 Lac reveals a period decrease of d P/dt =-1.69 × 10-6d yr-1. The results of the light curve solutions are:(i) the targets are overcontact binaries with small fill-out factors;(ii) their components are F–K stars, comparable in size, whose temperature differences are below 80 K;(iii) all targets undergo partial eclipses and to limit the possible mass ratios we carried out two-step q-search analysis. The target global parameters(luminosities, radii, masses) were obtained on the basis of their Gaia distances and the results of our light curve solutions. The obtained total mass of V560 Lac turns out to be smaller than the lower mass limit for presently known W UMa binaries of 1.0-1.2 M_⊙, i.e. this target is a peculiar overcontact system.展开更多
Contact binaries consist of two strongly interacting component stars where they are filling their critical Roche lobes and sharing a common envelope.Most of them are main-sequence stars,but some of them are post main-...Contact binaries consist of two strongly interacting component stars where they are filling their critical Roche lobes and sharing a common envelope.Most of them are main-sequence stars,but some of them are post main-sequence systems.They are good astrophysical laboratories for studying several problems such as the merging of binary stars,evolution of the common envelope,the origin of luminous red nova outbursts and the formation of rapidly rotating single stars with possible planetary systems.A large number of contact binary candidates were detected by several photometric surveys around the world and many of them were observed by the LAMOST spectroscopic survey.Based on follow-up observations,the evolutionary states and geometrical structures of some systems were understood well.In this review,we will introduce and catalog new stellar atmospheric parameters(i.e.,the effective temperature(Teff),the gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(Vr))for 9149 EW-type contact binaries that were obtained based on low-and medium-resolution spectroscopic surveys of LAMOST.Then we will focus on several groups of contact binary stars,i.e.,marginal contact binary systems,deep and low-mass ratio contact binary stars,binary systems below the short-period limit of contact binaries and evolved contact binaries.Marginal contact binaries are at the beginning of the contact stage,while deep and low-mass ratio contact binary stars are at the final evolutionary stage of tidally locked binaries.Several statistical relations including the period-temperature relation are determined well by applying LAMOST data and their formation and evolutionary states are reviewed.The period-color relation of M-type binaries reveals that there are contact binaries below the short-period limit.Searching for and investigating contact binaries near and below this limit will help us to understand the formation of contact binary systems and a new prediction for the short-period limit is about 0.15 d.Some evolved contact binaries were detected by the LAMOST survey where both components are sub-giants or giants.They provide a good opportunity to investigate evolution of the common envelope and are the progenitors of luminous red novae like V1309 Sco.展开更多
This paper discusses the gravitation waveforms of binaries coalescence into intermediate mass black holes(about 30 times of the solar mass).We focus on the non-spinning intermediate mass black hole located less than 1...This paper discusses the gravitation waveforms of binaries coalescence into intermediate mass black holes(about 30 times of the solar mass).We focus on the non-spinning intermediate mass black hole located less than 100 Mpc from earth.By comparing two simulation waveforms(effective one body numerical relativity waveform(EOBNR),phenomenological waveform),we discuss the relationship between the effective distance and frequency;and through analyzing large amounts of data in event,we find that the phenomenological waveform is much smoother than EOBNR waveform,and has higher accuracy at the same effective distance.展开更多
基金partly supported by the Joint Research Fund in Astronomy (grant Nos. U1931101, 42364001) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS)the National Natural Science Foundation of China (NSFC, Grant No. 11933008)+3 种基金the Guizhou Provincial Science and Technology Foundation (grant Nos.[2020]1Y017, ZK[2022]322)the Foundation of Education Bureau of Guizhou Province,China (grant No. KY (2020) 003)partially supported by the Open Project Program of the CAS Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciencesthe TESS team for its support。
文摘In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmetric LCs,cool starspots on the components were employed.It is suggested that their fill-out degrees are f=12.0%(LX Lyn) and f=26.3%(V0853 Aur).At the same time,we found that LX Lyn is a W-type eclipsing binary(EB) with an orbital inclination of i=84°.88 and a mass ratio of q=2.31.V0853 Aur is also a W-type CEB with a mass ratio of q=2.77 and an orbital inclination of i= 79°.26.Based on all available times of light minimum,their orbital period changes are studied by using the O-C method.The O-C diagram of LX Lyn reveals a cyclic oscillation with a period of about 14.84 yr and an amplitude of 0.0019 days,which can be explained by the light-travel time effect(LTTE) due to the presence of a third body with a minimum mass of0.06M_⊙.For V0853 Aur,it is discovered that the O-C diagram of the system also shows a cyclic oscillation with a period of 9.64 yr and an amplitude of 0.03365 days.The cyclic oscillation of V0853 Aur can be attributed to the LTTE by means of a third body with a mass no less than 3.77M_⊙.The third body may play an important role in the formation and evolution of these systems.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.U2038108,12192220,12192223 and 12133008the National SKA Program of China(No.2020SKA0110102)supported in part by the Youth Innovation Promotion Association of CAS(Y202064)。
文摘The observations of varying broad iron lines during the state transition of the black hole X-ray binaries have been accumulating.In this work,the relation between the normalized intensity and the width of iron lines is investigated,in order to understand better the variation of iron lines and possibly its connection to state transition.Considering the uncertainties due to ionization and illuminating X-rays,only the effects of geometry and gravity are taken into account.Three scenarios were studied,i.e.,the continuous disk model,the innermost annulus model,and the cloud model.As shown by our calculations,at given iron width,the line flux of the cloud model is smaller than that of the continuous disk model;while for the innermost annulus model,the width is almost unrelated with the flux.The range of the line strength depends on both the BH spin and the inclination of the disk.We then apply to the observation of MAXI J1631-479 by Nuclear Spectroscopic Telescope Array during its decay from the soft state to the intermediate state.We estimated the relative line strength and width according to the spectral fitting results in Xu et al.,and then compared with our theoretical width-flux relation.It was found that the cloud model was more favored.We further modeled the iron line profiles,and found that the cloud model can explain both the line profile and its variation with reasonable parameters.
基金funded by the National Aeronautics and Space Administrationsupported by the National Natural Science Foundation of China(11833007,12073023,12233007,and 12147103)+1 种基金the science research grants from the China Manned Space Project with No.CMS-CSST-2021-A06the fundamental research fund for Chinese central universities(Zhejiang University)。
文摘The power law and reflection emission have been observed in the X-ray spectra of both black hole X-ray binaries(BHXRBs)and active galactic nuclei(AGNs),indicating a common physical origin of the X-ray emission from these two types of sources.The relevant parameters describing the shape of both components and the potential correlation between these parameters can provide important clues on the geometric and physical properties of the disk and the corona in these sources.In this work,we present a positive correlation between the photon indexΓand the reflection strength R for the low-mass BHXRBs in the hard state by modeling NuSTAR data,which is qualitatively consistent with the previous studies.We compare our results with the predictions from different theoretical disk-corona models.We show that the RIT correlation found in this work seems to favor the moving corona model proposed by Beloborodov.Our results indicate that the coronal geometry varies significantly among BHXRBs.We further compare our results with that of AGNs.We find that the reflection strength R is smaller than unity in the hard state of BHXRBs,while it can be as large as~5 in AGNs,which implies that the variations of the disk-coronal geometry of AGNs are more vigorous than that of the BHXRBs in the hard state.
基金supported by the National Natural Science Foundation of China (Nos.11922306 and 11933008)the International Cooperation Projects of the National Key R&D Program (No.2022YFE0127300)the Yunnan Fundamental Research Projects (No.202201AT070180)。
文摘HH UMa and V1175 Her are two W UMa contact binary systems whose periods were reported as undergoing secular increase.In this paper,we improved their period analyses with a more extensive database of eclipse timings,finding that both periods show cyclic variation.The cyclic variation could be attributed to a Light Travel Time Effect induced by a third body.Both circular orbit and eccentric orbit cases were considered.For HH UMa,the cyclic variation with a period of around 20 yr has been detected,which may be caused by a third body with the mass larger than 0.23 M_(⊙).However,no parabolic variation was detected in its O−C curve,implying the balance of the mass transfer between the two components and the angular momentum loss from the binary system.As to V1175 Her,a long-term period increase superposed on a periodic oscillation was detected.The period increase with a rate of about dP/dt=2×10^(-7)day yr^(−1)indicates the mass transfer from the less massive component to its companion.The cyclic variation of about 7.5 yr could be caused by a hierarchical third body with a minimal mass exceeding 0.46M_(⊙)orbiting around the central binary.This mass is larger than that of the less massive component of the binary,which means that the secondary component was not replaced by the third body during early stellar interactions,implying that it keeps original dynamical information.By removing angular momentum from the central binary system,the tertiary component has played a significant role in the formation of contact binaries.
基金the Space Science and Geospatial Institute (SSGI) -Entoto Observatory and Research Center (EORC)Astronomy and Astrophysics Department for supporting this research。
文摘In this study,we determined the physical parameters of W UMa type contact binaries and their stability of mass transfer with different stellar mass ranges over a broad space by applying the basic dynamical evolution equations of the W UMa type contact binaries using accretor and donor masses between 0.079 and 2.79 M_(⊙).In these systems,we have studied the three subclasses of W UMa systems of A-,B-and W-type contact binaries using the initial and final mass ranges and we investigated different stellar and orbital parameters for the subclasses of W UMa systems.We examined the stability of the W UMa type contact binaries using the orbital parameters such as critical mass ratio,Roche lobe radius of the donor star and mass ratio of these systems.Thus,we computed the observed and calculated physical parameters of A-,B-and W-type W UMa systems.Moreover,we determined the combined and color temperatures to classify the three subclasses of the systems.Also,we presented the result of the internal stellar structure and evolution of W UMa type contact binaries by using the polytropic model.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11863002 and 11673032)Yunnan Academician Workstation of Wang Jingxiu(202005AF150025)+7 种基金China Manned Space Project with No.CMS-CSST-2021-A08Sino-German Cooperation Project(No.GZ 1284)supported by the Volkswagen Foundation under the special stipend No.9B870(2022)the support within the grant No.AP14869395 of the Science Committee of the Ministry of Science,Higher Education of Kazakhstan(“Triune model of Galactic center dynamical evolution on cosmological timescale”)Ministry of Education and Science of Ukraine under the collaborative grant M/32-23.05.2022the National Academy of Sciences of Ukraine under the Main Astronomical Observatory GPU computing cluster project No.13.2021.MMsupported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-ProjectID 138713538—SFB 881(“The Milky Way System”)by the Volkswagen Foundation under the Trilateral Partnerships grant Nos.90411 and 97778。
文摘The binary population in field stars and star clusters contributes to the formation of gravitational wave(GW)sources.However,the fraction of compact-object binaries(CBs),which is an important feature parameter of binary populations,is still difficult to measure and very uncertain.This paper predicts the fractions of important CBs and semi-compact object binaries(SCBs) making use of an advanced stellar population synthesis technique.A comparison with the result of N-body simulation is also presented.It is found that most CBs are formed within about 500 Myr after the starburst.The fractions of CBs and SCBs are demonstrated to correlate with stellar metallicity.The higher the metallicity becomes,the smaller the fraction of black hole binaries(BHBs),neutron star binaries(NSBs) and SCBs.This suggests that the GW sources of BHBs and NSBs are more likely to form in metal-poor environments.However,the fraction of black hole-neutron star binaries is shown to be larger for metalrich populations on average.
基金the generous support of the Natural Science Foundation of Xinjiang No.2021D01C075the National Natural Science Foundation of China+1 种基金project Nos.12163005,U2031204 and 11863005the science research grants from the China Manned Space Project with No.CMSCSST-2021-A10。
文摘The binary systems consisting of a Be star and a white dwarf(Be WDs) are very interesting.They can originate from the binaries composed of a Be star and a subdwarf O or B star(Besd OBs),and they can merge into red giants via luminous red nova or can evolve into double WD potentially detected by the LISA mission.Using the method of population synthesis,we investigate the formation and the destiny of Be WDs,and discuss the effects of the metallicity(Z) and the common envelope evolution parameters.We find that Besd OBs are significant progenitors of Be WDs.About 30%(Z = 0.0001)-50%(Z = 0.02) of Be WDs come from Besd OBs.About 60%(Z = 0.0001)-70%(Z = 0.02) of Be WDs turn into red giants via a merger between a WD and a non-degenerated star.About 30%(Z = 0.0001)-40%(Z = 0.02) of Be WDs evolve into double WDs which are potential gravitational waves of the LISA mission at a frequency band between about 3 × 10^(-3)and 3 × 10^(-2)Hz.The common envelope evolution parameter introduces an uncertainty with a factor of about 1.3 on Be WD populations in our simulations.
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
文摘This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively.
文摘In dentistry, panoramic X-ray images are extensively used by dentists for tooth structure analysis and disease diagnosis. However, the manual analysis of these images is time-consuming and prone to misdiagnosis or overlooked. While deep learning techniques have been employed to segment teeth in panoramic X-ray images, accurate segmentation of individual teeth remains an underexplored area. In this study, we propose an end-to-end deep learning method that effectively addresses this challenge by employing an improved combinatorial loss function to separate the boundaries of adjacent teeth, enabling precise segmentation of individual teeth in panoramic X-ray images. We validate the feasibility of our approach using a challenging dataset. By training our segmentation network on 115 panoramic X-ray images, we achieve an intersection over union (IoU) of 86.56% for tooth segmentation and an accuracy of 65.52% in tooth counting on 87 test set images. Experimental results demonstrate the significant improvement of our proposed method in single tooth segmentation compared to existing methods.
基金supported by the National Natural Science Foundation of China (No. 11325315)National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission
文摘EW-type eclipsing binaries(hereafter called EWs)are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope.Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index(VSX)by 2017 March 13.7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified.Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations.In the paper,those EWs are cataloged and their properties are analyzed.The distributions of orbital period(P),effective temperature(T),gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(RV)are presented for these observed EW-type systems.It is shown that about 80.6% of sample stars have metallicity below zero,indicating that EW-type systems are old stellar populations.This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years.The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems.The correlations between orbital period and effective temperature,gravitational acceleration and metallicity are presented and their scatters are mainly caused by(i)the presence of third bodies and(ii)sometimes wrongly determined periods.It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods.It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities.This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution are mainly driven by angular momentum loss via magnetic braking.
基金Supported by the National Natural Science Foundation of China.
文摘We have investigated the relation between the orbital period P<SUB>orb</SUB> and the spin period P<SUB>s</SUB> of neutron stars in OB/X-ray binaries. By simulating the time-development of the mass loss rate and radius expansion of a 20M<SUB>☉</SUB> donor star, we have calculated the detailed spin evolution of the neutron star before steady wind accretion occurs (that is, when the break spin period is reached), or when the OB star begins evolving off the main sequence or has filled its Roche lobe. Our results are compatible with the observations of OB/X-ray binaries. We find that in relatively narrow systems with orbital periods less than tens of days, neutron stars with initial magnetic field B<SUB>0</SUB> stronger than about 3×10<SUP>12</SUP> G can reach the break spin period to allow steady wind accretion in the main sequence time, whereas neutron stars with B<SUB>0</SUB> < 3×10<SUP>12</SUP> G and/or in wide systems would still be in one of the pulsar, rapid rotator or propeller phases when the companion evolves off the main sequence or fills its Roche lobe. Our results may help understand the various characteristics of the observed OB/neutron star binaries along with their distributions in the P<SUB>s</SUB>-P<SUB>orb</SUB> diagram.
文摘Eclipsing binaries are among the most important sources of information on stellar parameters like radii,masses,luminosities,etc.We present the analysis of six W UMa systems discovered in the Large Magellanic Cloud using the Wilson-Devinney method.
基金Supported by the National Natural Science Foundation of China。
文摘Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnetars are in binaries has not been excluded. In this work, we perform spin evolution of neutron stars with different magnetic fields in wind-fed high-mass X-ray binaries and compare the spin period distribution with observations, aiming to find magnetars in binaries. Our simulation shows that some of the neutron stars, which have long spin periods or are in widely-separated systems, need strong magnetic fields to explain their spin evolution. This implies that there are probably magnetars in high-mass X-ray binaries. Moreover, this can further provide a theoretical basis for some unclear astronomical phenomena, such as the possible origin of periodic fast radio bursts from magnetars in binary systems.
基金financial support from the Universidad Nacional Aut ónoma de México (UNAM) and DGAPA (PAPIIT IN 100918)supported by the National Natural Science Foundation of China (NSFC) (No. 11703016)+3 种基金by the Joint Research Fund in Astronomy (No. U1431105)by the Natural Science Foundation of Shandong Province (No. ZR2014AQ019)by the Young Scholars Program of Shandong University, Weihai (No. 20820171006)by the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects (No. OP201704)
文摘New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric.Therefore,a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa.At the same time,we added a third light to the photometric solution of FP Lyn for the final result.The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn,q = 1.075 and f = 4.6% for FV CVn,and q = 3.623 and f = 10.7% for V354 UMa respectively.The investigations of orbital period for these three systems indicate that the periods are variable.FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 ×10^-7 dyr^-1 and dp/dt = 7.70 ×10^-7 dyr^-1 respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component.In addition,some variable components were discovered for FV CVn,including a rate of dp/dt =-1.13 ×10^-6 dyr^-1 accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively.The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11573021, U1938104, and 12003020)the Fundamental Research Funds for the Central UniversitiesNational High Performance Computing Center (Xi’an)。
文摘Using the apparent correlation of luminosity(L;) versus displacement(R) of high mass X-ray binaries(HMXBs),we aim to constrain the common envelope(CE) mechanism, which is vital in the formation and evolution of compact binaries. We find that under the assumption of the γ-algorithm, the apparent correlation can also be reconstructed generally within a reasonable range of key parameters adopted, though the population of HMXBs is distinct with that in the canonical αCE-formalism. We compare the spatial distribution of HMXBs under the two CE mechanisms, and suggest the difference in L;versus R distribution may provide an additional clue for the study of the CE phase and to discriminate between CE models.
基金supported by NASA grant NNX14-AF77Gsupported by a NASA ADAP grant
文摘We examine systematically the observed X-ray luminosity jumps(or flares) from quiescent states in millisecond binary pulsars(MSBPs) and high-mass X-ray binary pulsars(HMXBPs). We rely on the published X-ray light curves of seven pulsars: four HMXBPs, two MSBPs and the ultraluminous X-ray pulsar M82 X-2. We discuss the physics of their flaring activities or lack thereof, paying special attention to their emission properties when they are found on the propeller line, inside the Corbet gap or near the light-cylinder barrier. We provide guiding principles for future interpretations of faint X-ray observations, as well as a method of constraining the propeller lines and the dipolar surface magnetic fields of pulsars using a variety of quiescent states. In the process, we clarify some disturbing inaccuracies that have made their way into the published literature.
基金supported partly by project DN08/20 of the Scientific Foundation of the Bulgarian Ministry of Education and Scienceby project RD 08-142 of Shumen University+1 种基金the support of the private IRIDA Observatory operated remotely(www.iridaobservatory.org)Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement
文摘We present photometric observations in Sloan filters g′, i′of the eclipsing W UMa stars USNOA2.0 1350-17365531, V471 Cas, V479 Lac and V560 Lac. The sinusoidal-like O-C diagram of V471 Cas indicates the presence of a third body with mass 0.12 M_⊙(a red dwarf) at distance 897 R_⊙. The O-C diagram of V479 Lac reveals a period decrease of d P/dt =-1.69 × 10-6d yr-1. The results of the light curve solutions are:(i) the targets are overcontact binaries with small fill-out factors;(ii) their components are F–K stars, comparable in size, whose temperature differences are below 80 K;(iii) all targets undergo partial eclipses and to limit the possible mass ratios we carried out two-step q-search analysis. The target global parameters(luminosities, radii, masses) were obtained on the basis of their Gaia distances and the results of our light curve solutions. The obtained total mass of V560 Lac turns out to be smaller than the lower mass limit for presently known W UMa binaries of 1.0-1.2 M_⊙, i.e. this target is a peculiar overcontact system.
基金supported by the National Natural Science Foundation of China(Nos.11933008,11922306,11773066 and 11903076)the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences。
文摘Contact binaries consist of two strongly interacting component stars where they are filling their critical Roche lobes and sharing a common envelope.Most of them are main-sequence stars,but some of them are post main-sequence systems.They are good astrophysical laboratories for studying several problems such as the merging of binary stars,evolution of the common envelope,the origin of luminous red nova outbursts and the formation of rapidly rotating single stars with possible planetary systems.A large number of contact binary candidates were detected by several photometric surveys around the world and many of them were observed by the LAMOST spectroscopic survey.Based on follow-up observations,the evolutionary states and geometrical structures of some systems were understood well.In this review,we will introduce and catalog new stellar atmospheric parameters(i.e.,the effective temperature(Teff),the gravitational acceleration(log(g)),metallicity([Fe/H])and radial velocity(Vr))for 9149 EW-type contact binaries that were obtained based on low-and medium-resolution spectroscopic surveys of LAMOST.Then we will focus on several groups of contact binary stars,i.e.,marginal contact binary systems,deep and low-mass ratio contact binary stars,binary systems below the short-period limit of contact binaries and evolved contact binaries.Marginal contact binaries are at the beginning of the contact stage,while deep and low-mass ratio contact binary stars are at the final evolutionary stage of tidally locked binaries.Several statistical relations including the period-temperature relation are determined well by applying LAMOST data and their formation and evolutionary states are reviewed.The period-color relation of M-type binaries reveals that there are contact binaries below the short-period limit.Searching for and investigating contact binaries near and below this limit will help us to understand the formation of contact binary systems and a new prediction for the short-period limit is about 0.15 d.Some evolved contact binaries were detected by the LAMOST survey where both components are sub-giants or giants.They provide a good opportunity to investigate evolution of the common envelope and are the progenitors of luminous red novae like V1309 Sco.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. CDJRC10300003
文摘This paper discusses the gravitation waveforms of binaries coalescence into intermediate mass black holes(about 30 times of the solar mass).We focus on the non-spinning intermediate mass black hole located less than 100 Mpc from earth.By comparing two simulation waveforms(effective one body numerical relativity waveform(EOBNR),phenomenological waveform),we discuss the relationship between the effective distance and frequency;and through analyzing large amounts of data in event,we find that the phenomenological waveform is much smoother than EOBNR waveform,and has higher accuracy at the same effective distance.