A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var...A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.展开更多
Under the working environment of high temperature and strong load impact,hot forging die is prone to failure which reduces the service life of die.Using arc additive manufacturing in the die cavity,a gradient material...Under the working environment of high temperature and strong load impact,hot forging die is prone to failure which reduces the service life of die.Using arc additive manufacturing in the die cavity,a gradient material hot forging die with high precision,superior per-formance,and conformal cooling channels is developed.This improves the toughness of the die cavity and reduces the working temperature,thereby forming an isothermal field,which is an effective method to enhance the lifespan of the hot forging die.Three kinds of gradient flux-cored wires are designed for the surface of 5CrNiMo steel,and the microstructure and mechanical properties between gradient interfaces were studied.Based on the spatial curved structure of shaped waterways in the hot forging die cavity,a study was conducted on the strategy of partitioned forming for the manufacturing of the die with shaped waterways.In order to avoid interference with the arc gun,the hot for-ging die is divided into four regions,namely the transition region,upper,middle,and lower region,based on a combination of cavity depth and internal U-shaped and quadrilateral structures.The results show that the developed flux-cored wires have good moldability with straight sides of deposited metal under different process parameters and flat surface without cracks,pores and other defects.Under the same working conditions,the life of hot forging die formed by the gradient materials is more than multiple times that of the single material hot forging die,and the temperature gradient field of the shaped waterway die is 7℃/cm smaller than that of traditional straight waterway.展开更多
Overcoming the global sustainability challenges of logistics requires applying solutions that minimize the negative effects of logistics activities.The most efficient way of doing so is through intermodal transportati...Overcoming the global sustainability challenges of logistics requires applying solutions that minimize the negative effects of logistics activities.The most efficient way of doing so is through intermodal transportation(IT).Current IT systems rely mostly on road,rail,and sea transport,not inland waterway transport.Developing dry port(DP)terminals has been proven as a sustainable means of promoting and utilizing IT in the hinterland of seaport container terminals.Conventional DP systems consolidate container flows from/to seaports and integrate road and rail transportation modes in the hinterland which improves the sustainability of the whole logistics system.In this article,to extend literature on the sustainable development of different categories of IT terminals,especially DPs,and their varying roles,we examine the possibility of developing DP terminals within the framework of inland waterway container terminals(IWCTs).Establishing combined road–rail–inland waterway transport for observed container flows is expected to make the IT systems sustainable.As such,this article is the first to address the modelling of such DP systems.After mathematically formulating the problem of modelling DP systems,which entailed determining the number and location of DP terminals for IWCTs,their capacity,and their allocation of container flows,we solved the problem with a hybrid metaheuristic model based on the Bee Colony Optimisation(BCO)algorithmand themeasurement of alternatives and ranking according to compromise solution(i.e.,MARCOS)multi-criteria decision-making method.The results from our case study of the Danube region suggest that planning and developingDP terminals in the framework of IWCTs can indeed be sustainable,as well as contribute to the development of logistics networks,the regionalisation of river ports,and the geographic expansion of their hinterlands.Thus,the main contributions of this article are in proposing a novel DP concept variant,mathematically formulating the problems of its modelling,and developing an encompassing hybrid metaheuristic approach for treating the complex nature of the problem adequately.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12022213,12002329,U23A2066,12272240,and 12002217)。
文摘A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.
基金supported by the National Key R&D Program of China(No.2017YFB1103200).
文摘Under the working environment of high temperature and strong load impact,hot forging die is prone to failure which reduces the service life of die.Using arc additive manufacturing in the die cavity,a gradient material hot forging die with high precision,superior per-formance,and conformal cooling channels is developed.This improves the toughness of the die cavity and reduces the working temperature,thereby forming an isothermal field,which is an effective method to enhance the lifespan of the hot forging die.Three kinds of gradient flux-cored wires are designed for the surface of 5CrNiMo steel,and the microstructure and mechanical properties between gradient interfaces were studied.Based on the spatial curved structure of shaped waterways in the hot forging die cavity,a study was conducted on the strategy of partitioned forming for the manufacturing of the die with shaped waterways.In order to avoid interference with the arc gun,the hot for-ging die is divided into four regions,namely the transition region,upper,middle,and lower region,based on a combination of cavity depth and internal U-shaped and quadrilateral structures.The results show that the developed flux-cored wires have good moldability with straight sides of deposited metal under different process parameters and flat surface without cracks,pores and other defects.Under the same working conditions,the life of hot forging die formed by the gradient materials is more than multiple times that of the single material hot forging die,and the temperature gradient field of the shaped waterway die is 7℃/cm smaller than that of traditional straight waterway.
文摘Overcoming the global sustainability challenges of logistics requires applying solutions that minimize the negative effects of logistics activities.The most efficient way of doing so is through intermodal transportation(IT).Current IT systems rely mostly on road,rail,and sea transport,not inland waterway transport.Developing dry port(DP)terminals has been proven as a sustainable means of promoting and utilizing IT in the hinterland of seaport container terminals.Conventional DP systems consolidate container flows from/to seaports and integrate road and rail transportation modes in the hinterland which improves the sustainability of the whole logistics system.In this article,to extend literature on the sustainable development of different categories of IT terminals,especially DPs,and their varying roles,we examine the possibility of developing DP terminals within the framework of inland waterway container terminals(IWCTs).Establishing combined road–rail–inland waterway transport for observed container flows is expected to make the IT systems sustainable.As such,this article is the first to address the modelling of such DP systems.After mathematically formulating the problem of modelling DP systems,which entailed determining the number and location of DP terminals for IWCTs,their capacity,and their allocation of container flows,we solved the problem with a hybrid metaheuristic model based on the Bee Colony Optimisation(BCO)algorithmand themeasurement of alternatives and ranking according to compromise solution(i.e.,MARCOS)multi-criteria decision-making method.The results from our case study of the Danube region suggest that planning and developingDP terminals in the framework of IWCTs can indeed be sustainable,as well as contribute to the development of logistics networks,the regionalisation of river ports,and the geographic expansion of their hinterlands.Thus,the main contributions of this article are in proposing a novel DP concept variant,mathematically formulating the problems of its modelling,and developing an encompassing hybrid metaheuristic approach for treating the complex nature of the problem adequately.