山地是应急决策过程的主要场景之一,面向移动终端和WEB展示等资源受限平台上的大场景优化显示方法是图形学和可视化领域的研究热点。文章在已有的DEM地形网格简化算法的基础上,提出了一种基于地形特征重要度的地形网格简化与调整算法。...山地是应急决策过程的主要场景之一,面向移动终端和WEB展示等资源受限平台上的大场景优化显示方法是图形学和可视化领域的研究热点。文章在已有的DEM地形网格简化算法的基础上,提出了一种基于地形特征重要度的地形网格简化与调整算法。通过K-means算法将地形网格顶点进行聚类,并且引入地形特征重要度来调整特定区域地形网格的大小,达到突出特定地形的效果;采用细节层次(levels of detail,LOD)算法指导地形网格的细分和简化,提高地形网格的绘制效率。实验结果表明,该算法有效地保留且突出了山地区域地形地貌,并且减少了顶点数量,提高了地形绘制和渲染的效率。展开更多
特征选择是攻击检测算法中的一种重要方法,该方法多采用交叉验证递归特征消除(Recursive Feature Elimination with Cross-Validation,RFECV)技术,并通常结合机器学习算法使用。但该算法多用于选取单模型特征,其性能也极易受特征量、学...特征选择是攻击检测算法中的一种重要方法,该方法多采用交叉验证递归特征消除(Recursive Feature Elimination with Cross-Validation,RFECV)技术,并通常结合机器学习算法使用。但该算法多用于选取单模型特征,其性能也极易受特征量、学习器的变化而波动,因其计算量大,该算法的分类准确率也仍需提高。针对上述问题,文中提出了一种基于特征重要度二次筛选的DDoS攻击随机森林检测方法。首先,该算法对原始数据集进行预处理并提取特征;其次,该算法为了从所选模型中选择最相关的变量,使用RF变量重要度准则,利用随机森林的重要性评分对变量进行排序;然后,在随机森林特征排序的基础上,对变量计算累积重要性并得到最重要变量;接着,使用所筛选出的最重要变量再次进行训练以生成分类模型,从而得出一组新的重要变量并将其定义为当前变量;最后,通过重要度准则,计算累积重要性来得到最终的最佳变量,从而有效地去除异常点,避免局部最优,进而实现对DDOS攻击的精准分类检测。实验结果表明,该方法具有较高的准确度和精确度,能够实现对正常流量以及各种DDoS攻击流量的精准分类,适用于在大数据下检测DDoS攻击。展开更多
针对现有无监督特征选择算法所选特征分类准确率不高的缺陷,提出两种新的无监督特征选择算法EDPFS(unsupervised Feature Selection algorithm based on Exponential Density Peaks)和RDPFS(unsupervised Feature Selection algorithm b...针对现有无监督特征选择算法所选特征分类准确率不高的缺陷,提出两种新的无监督特征选择算法EDPFS(unsupervised Feature Selection algorithm based on Exponential Density Peaks)和RDPFS(unsupervised Feature Selection algorithm based on the Reciprocal Density Peaks).该两算法提出特征密度与特征距离的概念,并以此定义特征代表性与特征区分度,特征代表性越高表明特征越重要,特征区分度越高表明特征冗余度越小,以特征代表性与区分度之积作为特征重要性评价准则,采用基于特征子集的支持向量机分类正确率评价特征子集的分类性能.在8个UCI机器学习数据库数据集和4个图像数据集上测试这两种新算法,以及多类簇特征选择方法、Laplacian分值特征选择方法、无监督判别特征选择方法和扩展的无监督特征选择方法,实验结果表明:以特征代表性与区分度之积定义的特征重要性评价准则是有效的,提出的两种基于该准则的无监督特征选择算法EDPFS和RDPFS选择的特征子集具有很好的分类性能.展开更多
文摘山地是应急决策过程的主要场景之一,面向移动终端和WEB展示等资源受限平台上的大场景优化显示方法是图形学和可视化领域的研究热点。文章在已有的DEM地形网格简化算法的基础上,提出了一种基于地形特征重要度的地形网格简化与调整算法。通过K-means算法将地形网格顶点进行聚类,并且引入地形特征重要度来调整特定区域地形网格的大小,达到突出特定地形的效果;采用细节层次(levels of detail,LOD)算法指导地形网格的细分和简化,提高地形网格的绘制效率。实验结果表明,该算法有效地保留且突出了山地区域地形地貌,并且减少了顶点数量,提高了地形绘制和渲染的效率。
文摘特征选择是攻击检测算法中的一种重要方法,该方法多采用交叉验证递归特征消除(Recursive Feature Elimination with Cross-Validation,RFECV)技术,并通常结合机器学习算法使用。但该算法多用于选取单模型特征,其性能也极易受特征量、学习器的变化而波动,因其计算量大,该算法的分类准确率也仍需提高。针对上述问题,文中提出了一种基于特征重要度二次筛选的DDoS攻击随机森林检测方法。首先,该算法对原始数据集进行预处理并提取特征;其次,该算法为了从所选模型中选择最相关的变量,使用RF变量重要度准则,利用随机森林的重要性评分对变量进行排序;然后,在随机森林特征排序的基础上,对变量计算累积重要性并得到最重要变量;接着,使用所筛选出的最重要变量再次进行训练以生成分类模型,从而得出一组新的重要变量并将其定义为当前变量;最后,通过重要度准则,计算累积重要性来得到最终的最佳变量,从而有效地去除异常点,避免局部最优,进而实现对DDOS攻击的精准分类检测。实验结果表明,该方法具有较高的准确度和精确度,能够实现对正常流量以及各种DDoS攻击流量的精准分类,适用于在大数据下检测DDoS攻击。
文摘针对现有无监督特征选择算法所选特征分类准确率不高的缺陷,提出两种新的无监督特征选择算法EDPFS(unsupervised Feature Selection algorithm based on Exponential Density Peaks)和RDPFS(unsupervised Feature Selection algorithm based on the Reciprocal Density Peaks).该两算法提出特征密度与特征距离的概念,并以此定义特征代表性与特征区分度,特征代表性越高表明特征越重要,特征区分度越高表明特征冗余度越小,以特征代表性与区分度之积作为特征重要性评价准则,采用基于特征子集的支持向量机分类正确率评价特征子集的分类性能.在8个UCI机器学习数据库数据集和4个图像数据集上测试这两种新算法,以及多类簇特征选择方法、Laplacian分值特征选择方法、无监督判别特征选择方法和扩展的无监督特征选择方法,实验结果表明:以特征代表性与区分度之积定义的特征重要性评价准则是有效的,提出的两种基于该准则的无监督特征选择算法EDPFS和RDPFS选择的特征子集具有很好的分类性能.