The electrical tree discharge channel will be formed at concentrate spot of electric field in solid insulation dielectric,in order to study the difference of electrical tree under different electrical field,the short-...The electrical tree discharge channel will be formed at concentrate spot of electric field in solid insulation dielectric,in order to study the difference of electrical tree under different electrical field,the short-cable electrode system with actual XLPE cable was designed,experiments were performed under 12 kV,15 kV,18 kV,21 kV compare to the needle-plate electrode system.Experiment results show that the electrical tree of short-cable electrode system have the same growth trend with the needle-plate electrode system in the growing characteristic,the dense of electrical tree increase with the increase of voltage level,electrical tree of short-cable electrode system growth is slower than the needle-plate electrode system at the same voltage;To get the same shape of electrical tree,the voltage of short-cable electrode system must be higher than needle-plate electrode system,the results show that the semiconductor layer and the copper shield layer outside of XLPE cable have very important affection on the electrical trees degradation.展开更多
This paper deals with the experiemental study on the correlation between the geometrical parameters of electrical tree and corresponding partial discharge (PD) characteristic parameters in the course of eletrical tree...This paper deals with the experiemental study on the correlation between the geometrical parameters of electrical tree and corresponding partial discharge (PD) characteristic parameters in the course of eletrical tree aging within cross linked polyethylene (XLPE) insulation. The electrical tree aging tests were performed on specimens removed from a section of 220 kV transmission cable. The PD macroscopic characteristic parameters were found to be significantly dependent on the corresponding geometrical parameters of eletrical tree channels in the course of aging of XLPE, and different kind of electrical tree has different characteristics, and there is obvious correlation between the type of electrical tree and the pre-applied power-frequency stress. Beside, using regression analysis, the expression of the relation between them were obtained, and from which it can be seen that there is significant nonlinear correlation between geometrical parameters of electrical tree and corresponding PD characteristic parameters in the course of aging of XLPE. Therefore, the aging degree of XLPE can be effectively evaluated by recognizing the changing regularity of the PD macroscopic characteristic parameters. Key words XLPE - electrical tree aging - partial discharge - mathematical model CLC number TM 121 Foundation item: Supported by the National Natural Science Foundation of China (59677018)Biography: Wang Hong-xin (1963-), male, Associate professor, Postdoctoral fellows, research direction: electrical insulation condition monitoring, EMC展开更多
基金Project Supported by Scientific Foundation for Outstanding Young Scientist of China(50425722)Natural Scientific Foundation of Chongqing(11699)
文摘The electrical tree discharge channel will be formed at concentrate spot of electric field in solid insulation dielectric,in order to study the difference of electrical tree under different electrical field,the short-cable electrode system with actual XLPE cable was designed,experiments were performed under 12 kV,15 kV,18 kV,21 kV compare to the needle-plate electrode system.Experiment results show that the electrical tree of short-cable electrode system have the same growth trend with the needle-plate electrode system in the growing characteristic,the dense of electrical tree increase with the increase of voltage level,electrical tree of short-cable electrode system growth is slower than the needle-plate electrode system at the same voltage;To get the same shape of electrical tree,the voltage of short-cable electrode system must be higher than needle-plate electrode system,the results show that the semiconductor layer and the copper shield layer outside of XLPE cable have very important affection on the electrical trees degradation.
文摘This paper deals with the experiemental study on the correlation between the geometrical parameters of electrical tree and corresponding partial discharge (PD) characteristic parameters in the course of eletrical tree aging within cross linked polyethylene (XLPE) insulation. The electrical tree aging tests were performed on specimens removed from a section of 220 kV transmission cable. The PD macroscopic characteristic parameters were found to be significantly dependent on the corresponding geometrical parameters of eletrical tree channels in the course of aging of XLPE, and different kind of electrical tree has different characteristics, and there is obvious correlation between the type of electrical tree and the pre-applied power-frequency stress. Beside, using regression analysis, the expression of the relation between them were obtained, and from which it can be seen that there is significant nonlinear correlation between geometrical parameters of electrical tree and corresponding PD characteristic parameters in the course of aging of XLPE. Therefore, the aging degree of XLPE can be effectively evaluated by recognizing the changing regularity of the PD macroscopic characteristic parameters. Key words XLPE - electrical tree aging - partial discharge - mathematical model CLC number TM 121 Foundation item: Supported by the National Natural Science Foundation of China (59677018)Biography: Wang Hong-xin (1963-), male, Associate professor, Postdoctoral fellows, research direction: electrical insulation condition monitoring, EMC