Cu-based catalysts are commonly used in industry for methanol synthesis.In this study,supported catalysts of 5 wt%Cu/Al_(2)O_(3)and 5 wt%Cu/ZnO were prepared,and their surface characteristics during H_(2) reduction an...Cu-based catalysts are commonly used in industry for methanol synthesis.In this study,supported catalysts of 5 wt%Cu/Al_(2)O_(3)and 5 wt%Cu/ZnO were prepared,and their surface characteristics during H_(2) reduction and CO_(2)hydrogenation were investigated using in situ Fourier transform infrared spectroscopy(FTIR),ex situ X-ray photoelectron spectroscopy,and high sensitivity low energy ion scattering spectroscopy.During the H2 reduction and CO_(2)hydrogenation processes,it was found that Al_(2)O_(3)can stabilize Cu^(+).In situ FTIR spectra indicated that the 5 wt%Cu/Al_(2)O_(3)can adsorb large amounts of bicarbonate and carbonate species,which then convert into formate during CO_(2)hydrogenation.For the 5 wt%Cu/ZnO,it was found that Cu nanoparticles were gradually covered by a highly defective ZnOx overlayer during H2 reduction,which can effectively dissociate H2.During CO_(2)hydrogenation,the adsorbed bicarbonate or carbonate species can convert into formate and then into a methoxy species.Using these surface sensitive methods,a more in-depth understanding of the synergistic effect among the Cu,Al_(2)O_(3),and ZnO components of Cu-based catalysts was achieved.展开更多
文摘Cu-based catalysts are commonly used in industry for methanol synthesis.In this study,supported catalysts of 5 wt%Cu/Al_(2)O_(3)and 5 wt%Cu/ZnO were prepared,and their surface characteristics during H_(2) reduction and CO_(2)hydrogenation were investigated using in situ Fourier transform infrared spectroscopy(FTIR),ex situ X-ray photoelectron spectroscopy,and high sensitivity low energy ion scattering spectroscopy.During the H2 reduction and CO_(2)hydrogenation processes,it was found that Al_(2)O_(3)can stabilize Cu^(+).In situ FTIR spectra indicated that the 5 wt%Cu/Al_(2)O_(3)can adsorb large amounts of bicarbonate and carbonate species,which then convert into formate during CO_(2)hydrogenation.For the 5 wt%Cu/ZnO,it was found that Cu nanoparticles were gradually covered by a highly defective ZnOx overlayer during H2 reduction,which can effectively dissociate H2.During CO_(2)hydrogenation,the adsorbed bicarbonate or carbonate species can convert into formate and then into a methoxy species.Using these surface sensitive methods,a more in-depth understanding of the synergistic effect among the Cu,Al_(2)O_(3),and ZnO components of Cu-based catalysts was achieved.