期刊文献+
共找到59,286篇文章
< 1 2 250 >
每页显示 20 50 100
XRD & XPS Study on the BaF_2 Promoted Sm_2O_3-LaF_3 Catalysts
1
作者 Ji Zhong LUO and Hui Lin WAN(Department of Chemistry & State Key Laboratory for Physical Chemistry of the Solid Surface, Xiamen UniversityXiamen 361005) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第1期83-86,共4页
Sm2O3-LaF3 and BaF2 promoted Sm2O3W3 catalysts shown good catalytic performance for the Oxidative Dehydrogenation of Ethane(ODE). XRD and XPS characterizations of the catalysts show the structure defects, which may be... Sm2O3-LaF3 and BaF2 promoted Sm2O3W3 catalysts shown good catalytic performance for the Oxidative Dehydrogenation of Ethane(ODE). XRD and XPS characterizations of the catalysts show the structure defects, which may be produced by the partial exchange of anions and cations,enhance the electron donating ability and increase the surface absorbed oxygen concentration thus should be favorable to improve the catalytic activity. However, the higher concentration of surface adsorbed oxygen is unfavorable for the ethene selectivity. 展开更多
关键词 SM La xrd XPS Study on the BaF2 Promoted Sm2O3-LaF3 catalysts
下载PDF
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst
2
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery Sulfur battery Air battery Catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
基于蒙特卡罗模拟的透射式XRD背景的定量分析
3
作者 袁靖茜 黄宁 +2 位作者 何泽 彭博 王鹏 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第2期441-450,共10页
XRD背景主要来源于空气、装置和样品中光子的散射,XRD分析需准确扣除背景,常用的扣背景方法具有一定的局限。蒙特卡罗模拟可实现光子的甄别与统计,因此可将其用于XRD背景来源的定量分析。相干散射的模拟中需考虑物质的Form Factor,这可... XRD背景主要来源于空气、装置和样品中光子的散射,XRD分析需准确扣除背景,常用的扣背景方法具有一定的局限。蒙特卡罗模拟可实现光子的甄别与统计,因此可将其用于XRD背景来源的定量分析。相干散射的模拟中需考虑物质的Form Factor,这可由Baró等的拟合式、独立原子模型或德拜公式给出;在20 keV能量及透射几何模式下,通过对骨、尼龙、水等物质的XRD模拟,对探测器中光子来源进行了区分和统计。结果表明,德拜公式计算的空气背景大于独立原子模型;空气散射在小角度时背景占比大,随散射角的增加从100%减小至40%以下,而样品中康普顿散射的计数占比则从0增大至60%以上。该方法可对不同样品组成以及复杂装置结构的XRD背景进行定量分析。 展开更多
关键词 蒙特卡罗模拟 xrd背景 Form Factor GEANT4
下载PDF
偏光显微镜和XRD在南非Postmasburg锰矿定性分析中的应用
4
作者 常洪伦 李甘雨 +5 位作者 韩美伶 杜俊 魏浩 赵东芳 时毓 杨大勇 《河北地质大学学报》 2024年第1期11-21,共11页
根据南非Postmasburg锰矿田BIF型矿体中的矿石分带和品位差异,识别出了富锰型矿石、砾岩型矿石以及铁质岩型矿石。为确定各类矿石的矿物成分,了解矿石类型与其矿物成分间的对应关系,以各类矿石为研究对象,对其中的矿物成分进行了研究。... 根据南非Postmasburg锰矿田BIF型矿体中的矿石分带和品位差异,识别出了富锰型矿石、砾岩型矿石以及铁质岩型矿石。为确定各类矿石的矿物成分,了解矿石类型与其矿物成分间的对应关系,以各类矿石为研究对象,对其中的矿物成分进行了研究。采用偏光显微鉴定技术结合X射线衍射物相分析,基于矿物偏光特征和特征衍射峰,对矿石中的矿物进行了定性。结果表明,富锰型矿石中的主量矿物为方铁锰矿和褐锰矿;砾岩型矿石中金属矿物几乎全为赤铁矿,黏土矿物以钠珠云母为主;含砾铁质岩中黏土矿物居多,以白云母为主,金属矿物多为赤铁矿。由此可见,偏光显微鉴定和XRD具有良好的一致性和互补性,尤其是对厚层的沉积型矿床,岩性和岩相具有一定变化序列的情况下,更适合二者相结合进行精确定性分析。 展开更多
关键词 偏光显微 xrd 岩矿 定性 南非
下载PDF
Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates 被引量:1
5
作者 Karl Adrian Gandionco Juwon Kim +2 位作者 Lieven Bekaert Annick Hubin Jongwoo Lim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期64-117,共54页
The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic ... The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries.In this technology,an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels.Over the past few years,single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance.Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide.However,it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide.In this review,we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts.It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through singleatom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels. 展开更多
关键词 ELECTROCATALYSIS electrochemical CO_(2)reduction hydrocarbons OXYGENATES single-atom catalysts
下载PDF
The regulation of ferrocene-based catalysts on heat transfer in highpressure combustion of ammonium perchlorate/hydroxyl-terminated polybutadiene/aluminum composite propellants 被引量:1
6
作者 Jinchao Han Songqi Hu Linlin Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期174-186,共13页
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i... The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures. 展开更多
关键词 AP/HTPB/Al propellants Heat transfer High-pressure combustion Ferrocene-based catalysts Pressure exponent
下载PDF
Are Ni/and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production?A comparison with g-Al2O3 supported catalysts 被引量:1
7
作者 M.Gonzalez-Castano C.Morales +4 位作者 J.C.Navarro de Miguel J.H.Boelte O.Klepel J.I.Flege H.Arellano-García 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期744-756,共13页
Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central is... Among challenges implicit in the transition to the post-fossil fuel energetic model,the finite amount of resources available for the technological implementation of CO_(2) revalorizing processes arises as a central issue.The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes.Taking Ni and NiFe catalysts supported over g-Al_(2)O_(3) oxide as reference materials,this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO_(2) methanation.The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface.Displaying lower Turn Over Frequencies than Ni/Al catalyst,the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances.For NiFe catalysts,analogous Ni_(5)Fe_(1) alloys were constituted over both alumina and biochar supports.The highest specific activity of the catalyst series,exhibited by the NiFe/C catalyst,was related to the development of surface basic sites along with weaker NiFe-C interactions,which resulted in increased Ni0:NiO surface populations under reaction conditions.In summary,the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama. 展开更多
关键词 Biochar catalysts Carbon catalysts Ni catalysts NiFe alloy Bimetallic catalysts Synthetic natural gas CO_(2)methanation
下载PDF
Engineering of geometrical configurations in dual-atom catalysts for electrocatalytic applications
8
作者 Tao Zhang Yifan Liu +3 位作者 Liang Xue Jingwen Sun Pan Xiong Junwu Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期273-287,共15页
Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,... Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications. 展开更多
关键词 Dual-atom catalysts Geometrical configurations HOMONUCLEAR HETERONUCLEAR ELECTROCATALYSIS
下载PDF
Preparation of single atom catalysts for high sensitive gas sensing
9
作者 Xinxin He Ping Guo +7 位作者 Xuyang An Yuyang Li Jiatai Chen Xingyu Zhang Lifeng Wang Mingjin Dai Chaoliang Tan Jia Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期216-248,共33页
Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the ... Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented. 展开更多
关键词 single atom catalysts PREPARATION sensing mechanism gas sensing
下载PDF
准东阜康凹陷XRD录井多层感知器法储层物性评价探索
10
作者 李建成 徐声驰 +3 位作者 李立 李晨 董彪 和丽安 《录井工程》 2024年第1期74-78,共5页
快速准确评价储层物性是试油选层及压裂定段的关键。为研究准东阜康凹陷二叠系上乌尔禾组优质储层分布层段,探索了多层感知器法在准东阜康凹陷XRD录井储层物性评价中的应用。通过收集大量的XRD录井数据,优选5种特征矿物构建多层感知器... 快速准确评价储层物性是试油选层及压裂定段的关键。为研究准东阜康凹陷二叠系上乌尔禾组优质储层分布层段,探索了多层感知器法在准东阜康凹陷XRD录井储层物性评价中的应用。通过收集大量的XRD录井数据,优选5种特征矿物构建多层感知器法神经网络模型,验证发现所建立的模型能够较好地拟合储层物性参数与矿物含量之间的关系。经过训练的模型在测试数据集上取得了较高的预测准确率,为快速、准确评价储层物性提供了新途径。在KT 5及F 47井应用取得了较好的评价效果,具有一定的推广应用价值。 展开更多
关键词 xrd 储层 物性评价 多层感知器 神经网络
下载PDF
Efficient and stable PtFe alloy catalyst for electrocatalytic methanol oxidation with high resistance to CO
11
作者 Qian Yang Sifan Zhang +5 位作者 Fengshun Wu Lihua Zhu Guang Li Mingzhi Chen An Pei Yingliang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期327-336,I0008,共11页
Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in ter... Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts. 展开更多
关键词 Alloy catalyst PTFE Methanol oxidation In-situ FTIR CO resistance
下载PDF
Efficient Direct Decomposition of NO over La_(0.8)A_(0.2)NiO_(3)(A=K, Ba, Y) Catalysts under Microwave Irradiation
12
作者 王浩 ZHAO Zijian +1 位作者 DUAN Xinghui ZHOU Shijia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期17-23,共7页
La_(0.8)A_(0.2)NiO_(3) (A=K,Ba,Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method.The crystalline phase and the catalytic activity of the La_(0.8)A_(0.2)NiO_(... La_(0.8)A_(0.2)NiO_(3) (A=K,Ba,Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method.The crystalline phase and the catalytic activity of the La_(0.8)A_(0.2)NiO_(3)catalysts were characterized by XRD and H_(2) temperature-programmed reduction (TPR).The effects of reaction temperature,oxygen concentration,and gas flow rate on the direct decomposition of nitric oxide over the synthesized catalysts were studied under microwave irradiation (2.45 GHz).The XRD results indicated that the La_(0.8)A_(0.2)NiO_(3) catalysts formed an ABO_(3) perovskite structure,and the H_(2)-TPR results revealed that the relative reducibility of the catalysts increased in the order of La_(0.8)K_(0.2)NiO_(3)>La_(0.8)Ba_(0.2)NiO_(3)>La_(0.8)Y_(0.2)Ni O_(3).Under microwave irradiation,the highest NO conversion amounted to 98.9%,which was obtained with the La_(0.8)K_(0.2)NiO_(3) catalyst at 400℃.The oxygen concentration did not inhibit the NO decomposition on the La_(0.8)A_(0.2)NiO_(3) catalysts,thus the N_(2) selectivity exceeded 99.8%under excess oxygen at 550℃.The NOconversion of the La_(0.8)A_(0.2)NiO_(3) catalysts decreased linearly with the increase in the gas flow rate. 展开更多
关键词 microwave catalysis direct decomposition of NO microwave-absorbing heating ceramics perovskite catalyst
下载PDF
Regeneration of copper catalysts mediated by molybdenum-based oxides
13
作者 Changyu Ding Xiaoli Pan +7 位作者 Isla E.Gow Xia Wu Hongchen Cao Zhounan Yu Xiaoyan Liu Xiaofeng Yang Qinggang Liu Yanqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期618-625,I0013,共9页
Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here... Cu catalysts,known for their unparalleled catalytic capabilities due to their unique electronic structure,have faced inherent challenges in maintaining long-term effectiveness under harsh hydrogenation conditions.Here,we demonstrate a molybdenum-mediated redispersion behavior of Cu under hightemperature oxidation conditions.The oxidized Cu nanoparticles with rich metal-support interfaces tend to dissolve into the MoO_(3)support upon heating to 600℃,which facilitates the subsequent regeneration in a reducing atmosphere.A similar redispersion phenomenon is observed for Cu nanoparticles supported on Zn O-modified MoO_(3).The modification of ZnO significantly improves the performance of the Cu catalyst for CO_(2)hydrogenation to methanol,with the high activity being well maintained after four repeated oxidation-reduction cycles.In situ spectroscopic and theoretical analyses suggest that the interaction involved in the formation of the copper molybdate-like compound is the driving force for the redispersion of Cu.This method is applicable to various Mo-based oxide supports,offering a practical strategy for the regeneration of sintered Cu particles in hydrogenation applications. 展开更多
关键词 Cu-based catalysts AGGREGATION REGENERATION OXIDATION CO_(2)hydrogenation
下载PDF
An effective catalyst carrier SiO_(2):Enhancing catalytic and combustion properties of CuFe_(2)O_(4)on energetic components
14
作者 Li Ding Chong Wan +2 位作者 Suhang Chen Zhao Qin Kangzhen Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期383-392,共10页
To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_... To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_(4)/SiO_(2)binary composites via solvothermal method.The phase structure,morphology and catalytic activity of CuFe_(2)O_(4)/SiO_(2)composites were studied firstly,and thermal decomposition,combustion and safety performance of ammonium perchlorate(AP)and 1,3,5-trinitroperhydro-1,3,5-triazine(RDX)with it affecting were then systematically analyzed.The results show that CuFe_(2)O_(4)/SiO_(2)composite can remarkably either advance the decomposition peak temperature of AP and RDX,or reduce the apparent activation energy at their main decomposition zone.Moreover,the flame propagation rate of RDX was promoted by about 2.73 times with SiO_(2)content of 3 wt%,and safety property of energetic component was also improved greatly,in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times.In addition,the effective range of SiO_(2)carrier content in the binary catalyst is found to be 3 to 5 wt%.Therefore,SiO_(2)opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe_(2)O_(4)catalyst in solid propellant. 展开更多
关键词 Copper ferrite Silicon dioxide Combustion catalyst Thermal decomposition Laser ignition
下载PDF
100 W-class green hydrogen production from ammonia at a dual-layer electrode containing a Pt-Ir catalyst for an alkaline electrolytic process
15
作者 Donghyun Yoon Sunki Chung +2 位作者 Minjun Choi Eunhyeok Yang Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期352-360,I0009,共10页
Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and i... Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER). 展开更多
关键词 Ammonia oxidation Dual-layer catalyst Green hydrogen Electrolytic process Oxygen evolution reaction
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
16
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Realizing methanol synthesis from CO and water via the synergistic effect of Cu^(0)/Cu^(+)over Cu/ZrO_(2) catalyst
17
作者 Yuan Fang Fan Wang +10 位作者 Yang Chen Qian Lv Kun Jiang Hua Yang Huibo Zhao Peng Wang Yuyan Gan Lizhi Wu Yu Tang Xinhua Gao Li Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期126-134,I0004,共10页
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ... The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor. 展开更多
关键词 H_(2)O CO METHANOL Cu-based catalysts t-ZrO_(2)
下载PDF
Engineering oxygen vacancies on Tb-doped ceria supported Pt catalyst for hydrogen production through steam reforming of long-chain hydrocarbon fuels
18
作者 Zhourong Xiao Changxuan Zhang +5 位作者 Peng Li Desong Wang Xiangwen Zhang Li Wang Jijun Zou Guozhu Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期181-192,共12页
Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on Ce... Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min. 展开更多
关键词 Steam reforming N-DODECANE Hydrogen production Pt-based catalyst Oxygen vacancy CeO_(2)
下载PDF
Preparation of Modified UiO-66 Catalyst and Its Catalytic Performance for NH_(3)-SCR Denitration
19
作者 吴彦霞 梁海龙 +2 位作者 CHEN Yufeng HU Liming WANG Chunpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期261-267,共7页
Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactiv... Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃. 展开更多
关键词 UiO-66 catalyst catalytic denitration NH_(3)-SCR MODIFIED
下载PDF
Boosting Fischer-Tropsch Synthesis via Tuning of N Dopants in TiO_(2)@CN-Supported Ru Catalysts
20
作者 Xincheng Li Yunhao Liu +10 位作者 Dejian Zhao Shuaishuai Lyu Jingwei Ye Xiaoshen Li Peipei Wu Ye Tian Yingtian Zhang Tong Ding Song Song Qingpeng Cheng Xingang Li 《Transactions of Tianjin University》 EI CAS 2024年第1期90-102,共13页
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ... Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%. 展开更多
关键词 Fischer-Tropsch synthesis N-doped carbon materials Ruthenium catalyst Pyridinic N Metal-N interaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部