X-ray diffraction (XRD) was used to study the structure of the organic crystallite unit (La, Lo doo2) in coals collected from Henan and Shanxi Provinces. XRD patterns of coal were collected in a step-scan mode (0...X-ray diffraction (XRD) was used to study the structure of the organic crystallite unit (La, Lo doo2) in coals collected from Henan and Shanxi Provinces. XRD patterns of coal were collected in a step-scan mode (0.1 °/step) over an angular range of 2-90° (20), allowing 8 s at each step. The structure of the crystallite unit was determined from the Scherrer equation and peak parameters deduced from whole pattern fitting. The results show that the structure of the crystallite unit in coal is mainly controlled by the coal rank. As the coal rank increases the average diameter of a coal crystallite unit (La) increases, the interlayer spacing (doo2) decreases slightly, and the average height of a coal crystallite unit (Lc) increases at first but then decreases. A new diffraction peak from the crystallite unit in coal was found at a low scattering angle in the XRD pattern (2-10~). This suggests a structure with an inter-layer spacing from 1.9 to 2.8 nm exists in coal crystallites.展开更多
Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were i...Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value(0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities.展开更多
基金supported in part by Program for New Century Excellent Talents in University of China (No. NCET-10-0133)Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 114100510004)
文摘X-ray diffraction (XRD) was used to study the structure of the organic crystallite unit (La, Lo doo2) in coals collected from Henan and Shanxi Provinces. XRD patterns of coal were collected in a step-scan mode (0.1 °/step) over an angular range of 2-90° (20), allowing 8 s at each step. The structure of the crystallite unit was determined from the Scherrer equation and peak parameters deduced from whole pattern fitting. The results show that the structure of the crystallite unit in coal is mainly controlled by the coal rank. As the coal rank increases the average diameter of a coal crystallite unit (La) increases, the interlayer spacing (doo2) decreases slightly, and the average height of a coal crystallite unit (Lc) increases at first but then decreases. A new diffraction peak from the crystallite unit in coal was found at a low scattering angle in the XRD pattern (2-10~). This suggests a structure with an inter-layer spacing from 1.9 to 2.8 nm exists in coal crystallites.
基金Project(JB141405)supported by the Fundamental Research Funds for the Central Universities of China
文摘Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value(0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities.