The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectr...The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.展开更多
Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in therm...Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants,the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present.In this paper,we propose a novel x-ray fluorescence(XRF) assisted LIBS method for high repeatability analysis of coal quality,which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal,but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements.With the combination of elemental lines in LIBS and XRF spectra,the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal.Quantitative analysis results show that the relative standard deviation(RSD) of C is 0.15%,the RSDs of other elements are less than 4%,and the standard deviations of calorific value,ash content,sulfur content and volatile matter are 0.11 MJ kg,0.17%,0.79% and 0.41%respectively,indicating that the method has good repeatability in determination of coal quality.This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.展开更多
A new method is proposed to prospect copper deposits with portable XRF analyzer. The method is based on the close relation between Cu and the chalcophile elements or some other elements in the geochemical anomalies of...A new method is proposed to prospect copper deposits with portable XRF analyzer. The method is based on the close relation between Cu and the chalcophile elements or some other elements in the geochemical anomalies of a Cu deposit. Applications of the technique in Northeast China are presented.展开更多
The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of...The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.展开更多
The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the...The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the tendency to change to [TiO_6] with the increase of TiO_2 con-tent. When the TiO_2 content increases to about 20mol% the tendency reaches its maximum.展开更多
This theoretical study conducted an X-ray fluorescence (XRF) analysis on specimen variation, with emphasis on variations on the thicknesses, density and particle sizes of specimens. The theoretical formula for X-ray f...This theoretical study conducted an X-ray fluorescence (XRF) analysis on specimen variation, with emphasis on variations on the thicknesses, density and particle sizes of specimens. The theoretical formula for X-ray fluorescence intensity was derived. These specimen variations were simulated using Monte Carlo Neutron-Particle Transport Code MCNP5. The Cu element X-ray characteristic peak counts were calculated. These variations made a conspicuous impact on the fluorescence intensity X-ray characteristic, in terms of theoretical formulas and calculations. There was a nonlinear relationship between thicknesses and count, except for thin specimens. As the density increased, the count increased in an exponential form for the saturated thick specimens. When the density reached 1 g.cm-3 , the count remained constant. The matrix materials (moisture) could increase the matrix effects. The higher the moisture was, the greater the matrix effect was. Specimen particle size also affects these measurement results. Hence, these specimens must be prepared before measurement. The calculations were consistent with the theoretical formulas.展开更多
<span style="font-family:Verdana;">A simple </span><span style="font-family:Verdana;">portable X-Ray Fluorescence (</span><span style="font-family:;" "=&qu...<span style="font-family:Verdana;">A simple </span><span style="font-family:Verdana;">portable X-Ray Fluorescence (</span><span style="font-family:;" "=""><span style="font-family:Verdana;">XRF) spectrometer was successfully used for </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> and nondestructive identification of the painting materials in two 15</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> century icons from the Onufri Museum in Beart, Albania. </span></span><span style="font-family:Verdana;">The spectrometer is based on a low power X-ray tube, a thermoelectrically cooled Si PIN detector and the spectrum acquisition system. It was assembled and adjusted at our laboratory for the investigation of the icons. </span><span style="font-family:Verdana;">A small number of pigments were clearly identified by </span><span style="font-family:Verdana;">X-Ray Fluorescence (</span><span style="font-family:Verdana;">XRF) measurements in both icons. This include</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> Lead white for the white color, gold and yellow ochre for the yellow color, red lead, cinnabar and red ochre for the red color, as well as cooper based pigments for the green color. At the same time, the investigation raised some new questions that need further investigations by </span><span style="font-family:Verdana;">the use of additional analytical techniques. The results show that in both</span><span style="font-family:Verdana;"> icons are used similar pigments, which are in accordance with the Byzantine icon painting tradition.</span></span>展开更多
Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements in soils. It is also essential for the soil-plant interaction purpose. To id...Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements in soils. It is also essential for the soil-plant interaction purpose. To identify soil mineral phases especially clay minerals, X-ray diffraction (XRD) has been a popular technique. The clay mineralogical information of soils in Bangladesh is limited, especially in Ganges flood plain region (Agro Ecological Zone (AEZ) 12 and 13). Therefore, to overcome this limitation, in this study, we performed XRD analysis of <2 mm fractions soil samples of AEX 12 and 13. However, identifying mineralogical phases by XRD in <2 mm fractions soils is not so straight-forward due to many practical problems. We fully matched only two mineralogical phases in all the soil samples which is quartz and potassium-Aluminum-Silicate. However, the full XRD peaks indicate that more minerals are also present, but due to heterogeneity of soils samples, it is difficult to find other minerals phases by only XRD peak of <2 mm fractions. Therefore, to find more information about mineralogical phases, we performed XRF analysis that provides the elemental composition of minerals phase as oxide. XRF analysis indicated the presence of secondary minerals like illite and chlorite. The presence of high percentage Fe oxide not only indicated the iron mineral phase (goethite and ferrihydrite) but also indicated iron rich high charge smectite minerals (beidellite). The presence of iron rich smectite minerals in the Ganges sediments reported in several previous studies. Thus, we concluded that only XRD in <2 mm fractions of soils is not adequate to identify the mineralogical phases of soil samples. Others analyses like XRF, XRD in <2 μm fractions will be necessary to locate an entire image of soil mineralogical phases.展开更多
Separation of target elements or minerals from their host rock or ore is essential to successful mining operation. The inevitable loss of a portion of the desired material that accompanies each step in the extraction ...Separation of target elements or minerals from their host rock or ore is essential to successful mining operation. The inevitable loss of a portion of the desired material that accompanies each step in the extraction process must be documented to develop the operational protocol. Superposition of the characteristic X-ray fluorescence spectra of head (crushed rock ore particles, pre-processing) and tail (post-processing particles) samples provides a direct visual comparison of relative peak sizes, and thereby the relative concentrations, of elements of interest. If the head and tail peaks are identical, none of the element was recovered in the extraction process. At the other extreme if the tail peak “flat lines”, i.e., there is no peak, there was 100% recovery of that element. Standardless visual comparison is valid if the same mass of identical starting material is incorporated into the head and tail sample analysis pucks, and XRF analytical conditions are identical. The considerable time and expense of acquiring and calibrating the standards associated with XRF analysis of 75 or more elements are avoided, a significant advantage during initial broad screening of an experimental extraction procedure. Full quantitation by XRF or an alternate technique can proceed at a later project stage, if desired. The approach retains and presents all features of the original data, thus eliminating questions about data quality, standards and their calibration, and data manipulation in processing from raw counts to concentrations in printout tables. This form of display is ideal for both the mining professional and such less technical groups as corporate staff, investors, regulators, and the public. Examples presented herein are for heap leaching;the protocol can be applied as well to any of the other traditional ore processing and beneficiation procedures, e.g., gravity concentration, magnetic and electrical separation, froth flotation, and ore sorting.展开更多
基金supported by the National Key R&D Project of China(No.2017YFC0602100)the National Natural Science Foundation of China(No.41774147)Sichuan Science and Technology Support Program(No.2015GZ0272)
文摘The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.
基金supported by National Energy R&D Center of Petroleum Refining Technology of China(RIPP,SINOPEC)National Key Research and Development Program of China(No.2017YFA0304203)+5 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R70)National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Industrial Application Innovation Project(No.627010407)Scientific and Technological Innovation Project of Shanxi Gemeng US-China Clean Energy R&D Center Co.,Ltd111 Project(D18001)Fund for Shanxi‘1331KSC’。
文摘Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants,the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present.In this paper,we propose a novel x-ray fluorescence(XRF) assisted LIBS method for high repeatability analysis of coal quality,which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal,but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements.With the combination of elemental lines in LIBS and XRF spectra,the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal.Quantitative analysis results show that the relative standard deviation(RSD) of C is 0.15%,the RSDs of other elements are less than 4%,and the standard deviations of calorific value,ash content,sulfur content and volatile matter are 0.11 MJ kg,0.17%,0.79% and 0.41%respectively,indicating that the method has good repeatability in determination of coal quality.This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.
文摘A new method is proposed to prospect copper deposits with portable XRF analyzer. The method is based on the close relation between Cu and the chalcophile elements or some other elements in the geochemical anomalies of a Cu deposit. Applications of the technique in Northeast China are presented.
基金supported by the Jordan University of Science and Technology(Grant No.20180167)the SESAME Synchrotron Center Jordan(Grant No.20185004)。
文摘The relative intensities of L-subshell x-ray fluorescence(XRF)for elements with atomic numbers 62≤Z≤83 were measured at two excitation energies,18 keV and 23 keV,using a synchrotron radiation source at a beamline of the Synchrotron Light Center for Experimental Science and Applications in the Middle East(SESAME),Jordan.The experimentally measured results of the relative intensities were compared with the calculated results using the subshell fluorescence yield and the Coster-Kronig transition probabilities recommended by Campbell and the values based on the Dirac-Hartree-Slater model by Puri.The experimental and theoretical results are in agreement.In this work,L XRF relative intensities for the elements Sm,Gd,Tb,Er,Ta,W,Re,Hg,Pb and Bi at energies of 18 keV and 23 keV were measured.
文摘The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the tendency to change to [TiO_6] with the increase of TiO_2 con-tent. When the TiO_2 content increases to about 20mol% the tendency reaches its maximum.
文摘This theoretical study conducted an X-ray fluorescence (XRF) analysis on specimen variation, with emphasis on variations on the thicknesses, density and particle sizes of specimens. The theoretical formula for X-ray fluorescence intensity was derived. These specimen variations were simulated using Monte Carlo Neutron-Particle Transport Code MCNP5. The Cu element X-ray characteristic peak counts were calculated. These variations made a conspicuous impact on the fluorescence intensity X-ray characteristic, in terms of theoretical formulas and calculations. There was a nonlinear relationship between thicknesses and count, except for thin specimens. As the density increased, the count increased in an exponential form for the saturated thick specimens. When the density reached 1 g.cm-3 , the count remained constant. The matrix materials (moisture) could increase the matrix effects. The higher the moisture was, the greater the matrix effect was. Specimen particle size also affects these measurement results. Hence, these specimens must be prepared before measurement. The calculations were consistent with the theoretical formulas.
文摘<span style="font-family:Verdana;">A simple </span><span style="font-family:Verdana;">portable X-Ray Fluorescence (</span><span style="font-family:;" "=""><span style="font-family:Verdana;">XRF) spectrometer was successfully used for </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> and nondestructive identification of the painting materials in two 15</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> century icons from the Onufri Museum in Beart, Albania. </span></span><span style="font-family:Verdana;">The spectrometer is based on a low power X-ray tube, a thermoelectrically cooled Si PIN detector and the spectrum acquisition system. It was assembled and adjusted at our laboratory for the investigation of the icons. </span><span style="font-family:Verdana;">A small number of pigments were clearly identified by </span><span style="font-family:Verdana;">X-Ray Fluorescence (</span><span style="font-family:Verdana;">XRF) measurements in both icons. This include</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> Lead white for the white color, gold and yellow ochre for the yellow color, red lead, cinnabar and red ochre for the red color, as well as cooper based pigments for the green color. At the same time, the investigation raised some new questions that need further investigations by </span><span style="font-family:Verdana;">the use of additional analytical techniques. The results show that in both</span><span style="font-family:Verdana;"> icons are used similar pigments, which are in accordance with the Byzantine icon painting tradition.</span></span>
文摘Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements in soils. It is also essential for the soil-plant interaction purpose. To identify soil mineral phases especially clay minerals, X-ray diffraction (XRD) has been a popular technique. The clay mineralogical information of soils in Bangladesh is limited, especially in Ganges flood plain region (Agro Ecological Zone (AEZ) 12 and 13). Therefore, to overcome this limitation, in this study, we performed XRD analysis of <2 mm fractions soil samples of AEX 12 and 13. However, identifying mineralogical phases by XRD in <2 mm fractions soils is not so straight-forward due to many practical problems. We fully matched only two mineralogical phases in all the soil samples which is quartz and potassium-Aluminum-Silicate. However, the full XRD peaks indicate that more minerals are also present, but due to heterogeneity of soils samples, it is difficult to find other minerals phases by only XRD peak of <2 mm fractions. Therefore, to find more information about mineralogical phases, we performed XRF analysis that provides the elemental composition of minerals phase as oxide. XRF analysis indicated the presence of secondary minerals like illite and chlorite. The presence of high percentage Fe oxide not only indicated the iron mineral phase (goethite and ferrihydrite) but also indicated iron rich high charge smectite minerals (beidellite). The presence of iron rich smectite minerals in the Ganges sediments reported in several previous studies. Thus, we concluded that only XRD in <2 mm fractions of soils is not adequate to identify the mineralogical phases of soil samples. Others analyses like XRF, XRD in <2 μm fractions will be necessary to locate an entire image of soil mineralogical phases.
文摘Separation of target elements or minerals from their host rock or ore is essential to successful mining operation. The inevitable loss of a portion of the desired material that accompanies each step in the extraction process must be documented to develop the operational protocol. Superposition of the characteristic X-ray fluorescence spectra of head (crushed rock ore particles, pre-processing) and tail (post-processing particles) samples provides a direct visual comparison of relative peak sizes, and thereby the relative concentrations, of elements of interest. If the head and tail peaks are identical, none of the element was recovered in the extraction process. At the other extreme if the tail peak “flat lines”, i.e., there is no peak, there was 100% recovery of that element. Standardless visual comparison is valid if the same mass of identical starting material is incorporated into the head and tail sample analysis pucks, and XRF analytical conditions are identical. The considerable time and expense of acquiring and calibrating the standards associated with XRF analysis of 75 or more elements are avoided, a significant advantage during initial broad screening of an experimental extraction procedure. Full quantitation by XRF or an alternate technique can proceed at a later project stage, if desired. The approach retains and presents all features of the original data, thus eliminating questions about data quality, standards and their calibration, and data manipulation in processing from raw counts to concentrations in printout tables. This form of display is ideal for both the mining professional and such less technical groups as corporate staff, investors, regulators, and the public. Examples presented herein are for heap leaching;the protocol can be applied as well to any of the other traditional ore processing and beneficiation procedures, e.g., gravity concentration, magnetic and electrical separation, froth flotation, and ore sorting.