旨在构建ALV-J受体分子chNHE1精准基因编辑细胞系,本研究利用荧光标记的CRISPR/Cas9系统,在DF-1细胞中将chNHE1介导ALV-J进入宿主细胞的关键氨基酸V33进行突变,W38进行缺失,同时将编码第34-37位氨基酸的密码子同义替换。通过流式细胞分...旨在构建ALV-J受体分子chNHE1精准基因编辑细胞系,本研究利用荧光标记的CRISPR/Cas9系统,在DF-1细胞中将chNHE1介导ALV-J进入宿主细胞的关键氨基酸V33进行突变,W38进行缺失,同时将编码第34-37位氨基酸的密码子同义替换。通过流式细胞分选获得48株单克隆细胞系,PCR及测序分析结果显示,其中有14株单克隆细胞系的chNHE1成功发生V33突变、W38缺失以及34-37位氨基酸的密码子同义替换,基因编辑效率为29%。为了验证chNHE1基因编辑DF-1细胞系的遗传稳定性及增殖水平,对传至第25代的细胞系进行测序分析,结果显示,chNHE1基因未发生回复性突变;进一步细胞计数分析结果显示,chNHE1基因编辑细胞系增殖水平未受到影响;为了评价chNHE1基因编辑细胞系抗ALV-J感染的能力,分别利用ALV-J荧光报告病毒(ALV-J-GFP)及ALV-J原型毒株(HPRS-103)对其进行病毒感染试验,荧光观察结果及流式细胞分析结果显示,chNHE1基因编辑细胞系可完全抵抗0.1 MOI ALV-J-GFP的感染;进一步间接免疫荧光试验、PCR扩增试验以及病毒滴度测定试验结果显示,chNHE1基因编辑细胞系可完全抵抗0.1 MOI HPRS-103毒株及0.1 MOI JL08CH3-1毒株的感染。本研究利用荧光标记的CRISPR/Cas9系统结合流式细胞分选,成功构建了chNHE1基因编辑细胞系,其可完全抵抗ALV-J的感染,且该细胞系遗传稳定性及增殖活性良好,为建立抗ALV-J感染的新技术提供了理论支持及基因编辑靶点。展开更多
Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the pr...Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.展开更多
We presented photometry for an EB-type totally eclipsing binary,1SWASP J010313.78+352903.7,observed with the Xinglong 85 cm telescope on 2021 October 22.Light curves in five bands(including the TESS data)were analyzed...We presented photometry for an EB-type totally eclipsing binary,1SWASP J010313.78+352903.7,observed with the Xinglong 85 cm telescope on 2021 October 22.Light curves in five bands(including the TESS data)were analyzed by employing the Wilson-Devinney method.The photometric solutions show that it is a contact binary with a relatively low mass ratio(q≌0.28),relatively large fill-out factor(f≌40%)and large temperature difference(ΔT≌1700 K).Max.I-Max.II is up to about 9%of variable light amplitude of the asymmetric light curves.It is well described by double-hot spots model on the surface of the cooler secondary.The two hot spots are both in growing and evolving.They may be caused by two different mechanics,i.e.,magnetic stellar activity and mass transfer.The large temperature difference between the two contact components indicates that they share a non-thermal equilibrium common envelope.展开更多
文摘旨在构建ALV-J受体分子chNHE1精准基因编辑细胞系,本研究利用荧光标记的CRISPR/Cas9系统,在DF-1细胞中将chNHE1介导ALV-J进入宿主细胞的关键氨基酸V33进行突变,W38进行缺失,同时将编码第34-37位氨基酸的密码子同义替换。通过流式细胞分选获得48株单克隆细胞系,PCR及测序分析结果显示,其中有14株单克隆细胞系的chNHE1成功发生V33突变、W38缺失以及34-37位氨基酸的密码子同义替换,基因编辑效率为29%。为了验证chNHE1基因编辑DF-1细胞系的遗传稳定性及增殖水平,对传至第25代的细胞系进行测序分析,结果显示,chNHE1基因未发生回复性突变;进一步细胞计数分析结果显示,chNHE1基因编辑细胞系增殖水平未受到影响;为了评价chNHE1基因编辑细胞系抗ALV-J感染的能力,分别利用ALV-J荧光报告病毒(ALV-J-GFP)及ALV-J原型毒株(HPRS-103)对其进行病毒感染试验,荧光观察结果及流式细胞分析结果显示,chNHE1基因编辑细胞系可完全抵抗0.1 MOI ALV-J-GFP的感染;进一步间接免疫荧光试验、PCR扩增试验以及病毒滴度测定试验结果显示,chNHE1基因编辑细胞系可完全抵抗0.1 MOI HPRS-103毒株及0.1 MOI JL08CH3-1毒株的感染。本研究利用荧光标记的CRISPR/Cas9系统结合流式细胞分选,成功构建了chNHE1基因编辑细胞系,其可完全抵抗ALV-J的感染,且该细胞系遗传稳定性及增殖活性良好,为建立抗ALV-J感染的新技术提供了理论支持及基因编辑靶点。
基金supported by the STI 2030-Major Projects 2022ZD0208500(to DY)the National Natural Science Foundation of China,Nos.82072011(to YX),82121003(to DY),82271120(to YS)+2 种基金Sichuan Science and Technology Program,No.2022ZYD0066(to YS)a grant from Chinese Academy of Medical Science,No.2019-12M-5-032(to YS)the Fundamental Research Funds for the Central Universities,No.ZYGX2021YGLH219(to KC)。
文摘Glaucoma is a leading cause of irreve rsible blindness wo rldwide,and previous studies have shown that,in addition to affecting the eyes,it also causes abnormalities in the brain.However,it is not yet clear how the primary visual cortex(V1)is altered in glaucoma.This study used DBA/2J mice as a model for spontaneous secondary glaucoma.The aim of the study was to compare the electrophysiological and histomorphological chara cteristics of neurons in the V1between 9-month-old DBA/2J mice and age-matched C57BL/6J mice.We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses,including single-unit spiking and gamma band oscillations.The morphology of layerⅡ/Ⅲneurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections.Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined.Compared with the C57BL/6J group,V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation.Moreove r,fewer neuro ns were observed in the V1 of DBA/2J mice compared with C57BL/6J mice.These findings suggest that DBA/2J mice have fewer neurons in the VI compared with C57BL/6J mice,and that these neurons have impaired visual tuning.Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model.This study might offer some innovative perspectives regarding the treatment of glaucoma.
基金supported by the Natural Science Foundation of Shandong Province,China(ZR2021QA082)the National Natural Science Foundation of China(No.11922306)the Doctoral Start-up Foundation of Yantai University(SX20B112)。
文摘We presented photometry for an EB-type totally eclipsing binary,1SWASP J010313.78+352903.7,observed with the Xinglong 85 cm telescope on 2021 October 22.Light curves in five bands(including the TESS data)were analyzed by employing the Wilson-Devinney method.The photometric solutions show that it is a contact binary with a relatively low mass ratio(q≌0.28),relatively large fill-out factor(f≌40%)and large temperature difference(ΔT≌1700 K).Max.I-Max.II is up to about 9%of variable light amplitude of the asymmetric light curves.It is well described by double-hot spots model on the surface of the cooler secondary.The two hot spots are both in growing and evolving.They may be caused by two different mechanics,i.e.,magnetic stellar activity and mass transfer.The large temperature difference between the two contact components indicates that they share a non-thermal equilibrium common envelope.