Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is possibly the most important disease of Brassica worldwide. To compare chromosomal positions of Xcc resistance loci in Brassica oleracea between the p...Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is possibly the most important disease of Brassica worldwide. To compare chromosomal positions of Xcc resistance loci in Brassica oleracea between the present and published studies and to develop marker assisted selection (MAS) to resistance against Xcc race 1, we constructed a B. oleracea map, including pW, pX and BoCL markers that were closely linked to previously reported Xcc resistance QTLs. We also analyzed Xcc resistance QTLs by improving our previously reported map derived from the cross of a susceptible double-haploid line (GC P09) with a resistant double-haploid line (Reiho P01). In the nine linkage groups obtained (C1-C9), the major QTL, XccBo(Reiho)2, was derived from Reiho with a maximum LOD score (7.7) in C8. The QTL (LOD 4.4) located in C9, XccBo(GC)1 was derived from the susceptible GC. The other QTL (LOD 4.4), XccBo(Reiho)1, was found in C5. Based on common markers, it was possible to compare our finding Xcc resistance QTLs with the B. oleraceaXcc loci reported by previous authors;XccBo(Reiho)1 and XccBo(GC)1 may be identical to the Xcc resistance QTLs reported previously or a different member contained in the same resistance gene cluster. Our map includes public SSR markers linked to Xcc resistance genes that will promote pyramiding Xcc resistance genes in B. oleracea. The present study will also contribute to a better understanding of genetic control of Xcc resistance.展开更多
hrp mutants were produced from strain JXOIII of Xanthomonas oryzae pv. oryzae (Xoo) and strain RS105 of X.o. pv. oryzicola (Xooc), respectively, by using diethyl sulfate (DES) as a mutagenic che ...hrp mutants were produced from strain JXOIII of Xanthomonas oryzae pv. oryzae (Xoo) and strain RS105 of X.o. pv. oryzicola (Xooc), respectively, by using diethyl sulfate (DES) as a mutagenic che mical. All the hrp mutants lost their pathogenicity on a susceptible host plant, rice (Shanyou63), and elicitation of the hypersensitive response (HR) on a nonhost plant, tobacco (NC89). Extracellular enzyme (amy lase, pectate lyase, proteinase, cellulase and lipase) activities of all the hrp mutants were similar to those of the corresponding wild type strains. The response of tobacco to cell sonicated integrations of the wild type strains and the hrp mutants demonstrated that there existed an HR eliciting substance which was heat stable and sensitive to protease. No HR appeared on tobacco after infiltration of the lipopolysaccharide (LPS) of both the wild strains and hrp mutants into tobacco leaves. The ability of the Xooc hrp mutants to induce HR on tobacco and cause streak disease on rice was restored by complementation with pUHRX245 from JXOIII genomic DNA library and by pUHRS138 from RS105 genomic DNA library, respectively. Subcloning of a 38.6 kb hrp fragment insert in pUHRX245 and a 39.3 kb insert in pUHRS138 revealed that a 3.3 kb Sac Ⅰ fragment from pUHRX245 and a 4.5 kb Bam HⅠ Kpn Ⅰ fragment from pUHRS138 were the minimal functional portions required for restoration of the ability of Xooc hrp mutants to induce HR on tobacco and cause disease on rice. The disease symptom caused by the conjugant (M1005 plus 3.3 kb) on rice was similar to that caused by the wild type of Xooc. It suggests that the two fragments contain the same hrp gene(s) and are responsible reciprocally for HR induction on tobacco and pathogenicity on rice.展开更多
Xanthomonas oryzae pv.oryzicola(Xoc) causes a destructive bacterial leaf streak disease in rice.Some of the gene products annotated as hypothetical proteins in the genome of Xoc may contribute to its virulence in ri...Xanthomonas oryzae pv.oryzicola(Xoc) causes a destructive bacterial leaf streak disease in rice.Some of the gene products annotated as hypothetical proteins in the genome of Xoc may contribute to its virulence in rice.A mutant,Mxoc1679,screened from our previous Tn5-tagged mutant library for Xoc strain RS105,showed reduced virulence in rice.In this mutant,a gene named as Xoryp_08180 was disrupted by Tn5 insertion.Xoryp_08180 encodes a 1 306-aa hypothetical protein which is highly conserved in Xanthomonas spp.Non-polar mutation of Xoryp_08180 in RS105 strain led to a significant reduction in bacterial virulence and growth in rice,a delayed hypersensitive response(HR) in non-host tobacco,and a decrease in extracellular protease activity.The deficiencies above were restored to wild-type level in the complementary strain by expressing Xoryp_08180 in trans.In addition,the expression of Xoryp_08180 was repressed in hrpG and hrpX mutants in planta but not in a nutrient-rich condition.These results suggested that Xoryp_08180 is a virulence factor required for extracellular protease production,HR induction and full virulence of Xoc.展开更多
The leaf, bark and seed extracts ofMoringa oleifera were evaluated for their efficacy under field conditions in suppressing Xanthomonas campestris pv. campestris in rape (Brassica napus. L.). Xanthomonas campestris ...The leaf, bark and seed extracts ofMoringa oleifera were evaluated for their efficacy under field conditions in suppressing Xanthomonas campestris pv. campestris in rape (Brassica napus. L.). Xanthomonas campestris pv. campestris is an important bacterial pathogen of agricultural importance causing devastating black rot disease of Brassicas. Three extracts concentrations of 60, 100 and 140% were sprayed as foliar applications weekly and the antibacterial activity was evaluated by recording number of totally defoliated plants. The three extracts showed significant effect against the test pathogen (p 〉 0.05). The antibacterial activity of seed extract demonstrated higher activity against the Xanthomonas campestris pv. campestris as evidenced by lower mean leaf defoliation of 1.59 cm followed by bark (2.58 cm) and lastly leaf extracts (2.96 cm) (p 〈 0.05). There were no significant differences based on the concentration levels used. Observations revealed that 100% and 140% levels were not significantly different from each other on enhancing growth of the stem diameter. Moringa seed at 60% concentration level can be used to enhance growth of rape. The conclusion is that Moringa seed extracts can be effectively implemented to suppress Xanthomonas campestris pv. campestris pathogen in field grown rape in an integrated disease control program.展开更多
A phytotoxin from Xanthomonas campestris pv. retroflexus was isolated using a chromatographer and HPLC, and the components were identified to be a mixture of minor molecular compounds including organic acids and cyclo...A phytotoxin from Xanthomonas campestris pv. retroflexus was isolated using a chromatographer and HPLC, and the components were identified to be a mixture of minor molecular compounds including organic acids and cyclo-(proline-phenylalanine). The greenhouse cultivation test was used to determine the influence of the isolated fractions on the growth of target weed redroot pigweed (Amaranthus retroflexus L). The experimental results demonstrated that the cyclo-(Pro-Phe) had the weed inhibit activity obviously on dicotyledonous weed and the mixture with six organic acids showed stronger bioactivity. Further, greenhouse and field test were processed, and the test showed that the use of the toxin appeared to have the potential to be developed further as a bioherbicide system to control weedy grasses.展开更多
Horizontal gene transfer(HGT)has been well documented as a driving force in the evolution of bacteria.It has been shown that a horizontally acquired gene,xoc_2868,involved in the global response against oxidative stre...Horizontal gene transfer(HGT)has been well documented as a driving force in the evolution of bacteria.It has been shown that a horizontally acquired gene,xoc_2868,involved in the global response against oxidative stress and pathogenicity of Xanthomonas oryzae pv.oryzicola strain BLS256.However,as a transcriptional factor(TF),the regulatory mechanism of XOC_2868 has not yet been revealed.Here,evolutionary analysis suggested XOC_2868 might be co-transferred with its physically proximate downstream genes from a Burkholderiaceae ancestor.Interestingly,RNA-seq data of wild-type(BLS256)andΔxoc_2868 strains under oxidative stress showed that XOC_2868 did not regulate the expression of its adjacent genes,but remarkably influenced the expression of several genes involved in the extracellular polysaccharide(EPS)production and xanthan biosynthesis.Chromatin immunoprecipitation-sequence(ChIP-seq)combined with transcriptome analysis revealed that XOC_2868 directly regulates a cydAB operon,encoding two subunits of cytochrome bd oxidase and involved in redox balance.Consistent withΔxoc_2868 strain,cydA-and cydAB-knockout mutants also showed a higher sensitivity to H_(2)O_(2)along with a reduced bacterial virulence compared with the wild-type strain.Overall,our findings raise the possibility of regulatory circuit evolution shaped by HGT and driven by selection and reveal a novel regulatory pathway that regulates the expression of cytochrome bd oxidase and thus contributes to the virulence of BLS256.展开更多
Bacterial spot(BS)is a severe bacterial disease induced by Xanthomonas campestris pv.vesicatoria(Xcv),a pathogen that causes serious damage to pepper growth and yield.It is therefore important to study the mechanisms ...Bacterial spot(BS)is a severe bacterial disease induced by Xanthomonas campestris pv.vesicatoria(Xcv),a pathogen that causes serious damage to pepper growth and yield.It is therefore important to study the mechanisms of pepper resistance to Xcv and to breed and promote Xcvresistant pepper varieties.However,studies of the responses to Xcv infection in peppers at the protein level are limited.Here,we examined Xcv-induced proteomic changes in leaves of the BS susceptible bell pepper ECW and the resistant bell pepper VI037601 using the isobaric tags for relative and absolute quantitation(iTRAQ)-based protein labeling technology.A total of 6,120 distinct proteins were identified,and there were 1,289 significantly differentially accumulated proteins(DAPs)in ECW and VI037601 leaves after Xcv inoculation.Among these,339(250up-and 89 down-regulated)and 479(300 up-and 179 down-regulated)DAPs were specifically identified in ECW and VI037601,respectively,with 459(364 up-and 95 down-regulated)similarly expressed DAPs being shared by ECW and VI037601.Based on bioinformatics analysis,many defense-associated proteins were identified as up-regulated in ECW and VI037601,especially the proteins involved in plant-pathogen interaction,phenylpropanoid biosynthesis,protein processing in the endoplasmic reticulum,and MAPK signaling pathway-plant.Moreover,we evaluated transcript levels of six differentially expressed genes from the iTRAQ results by q RT-PCR.The analysis revealed transcriptional changes that were consistent with the changes at the protein level.This study will provide a valuable resource for understanding the molecular basis of pepper resistance to Xcv infection and for improving the disease resistance of pepper cultivars.展开更多
Mango bacterial canker is caused by Xanthomonas campestris pv. mangiferaeindicae. During 2009 and 2013,leaves,twigs and fruits of mango were collected from commercial and experimental mango fields with typical canker ...Mango bacterial canker is caused by Xanthomonas campestris pv. mangiferaeindicae. During 2009 and 2013,leaves,twigs and fruits of mango were collected from commercial and experimental mango fields with typical canker symptoms in Hainan,Guangxi,Guangdong and Szechwan Provinces of China. The causal agent was identified as X. campestris pv. mangiferaeindicae through KC semi-selective medium isolation,pathogenicity tests,and sequencing of the gyrB gene.展开更多
Xanthomonas oryzae pv.oryzicola (Xoc),the critical pathogen causing bacterial leaf streak in rice,possesses a hrp cluster that is responsible for triggering hypersensitive response (HR) in non-host tobacco and pat...Xanthomonas oryzae pv.oryzicola (Xoc),the critical pathogen causing bacterial leaf streak in rice,possesses a hrp cluster that is responsible for triggering hypersensitive response (HR) in non-host tobacco and pathogenicity in host rice,and is considered to be one of the model pathogens in the rice model plant.Here,we developed a high-throughput mutagenesis system using a two-step integration mediated by a novel suicide vector pKMS1.It was used to generate single or poly-gene mutants of hpa1,hpa2,hrcV,hrpE,hpaB,and hrpF gene for functional analysis.In total,five single,four double,and two triple hrp gene mutants were constructed.The double and triple hrp gene deletion mutants triggered novel phenotypes in planta.Our data suggest that pKMS1 is a useful tool for non-marker mutagenesis of multiple genes in Xoc.展开更多
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak, a devastating disease in rice-growing regions worldwide. A Tn5-insertion mutant in Xoc_3248, encoding an inner membrane protein (Imp), showed re...Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak, a devastating disease in rice-growing regions worldwide. A Tn5-insertion mutant in Xoc_3248, encoding an inner membrane protein (Imp), showed reduced virulence in rice. To explore the potential function of this gene in virulence, a deletion mutant R?imp was constructed in the wild-type RS105. The R?imp mutant was signiifcantly impaired for bacterial virulence and growth in planta. The mutation in imp made the pathogen insufifciently utilize glucose, fructose, mannose or pyruvate as a sole carbon source, leading to less extracellular polysaccharide (EPS) production and reduced motility. The deifciencies noted for the mutant were restored to wild-type levels when imp was introduced in trans. Transcription of imp was signiifcantly declined when hrpG and hrpX was mutated and the expression of hrpG and hrpX was also signiifcantly declined when imp was deleted. Cell sublocalization in planta showed Imp membrane-binding feature. These results suggest that Imp is a virulence factor with roles in the catabolism of sugars, EPS production, and bacterial motility.展开更多
The polymerase chain reaction(PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR Green real-time PCR were developed to facilitate the simultaneous detection of three...The polymerase chain reaction(PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR Green real-time PCR were developed to facilitate the simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv.oryzae, X. oryzae pv. oryzicola, and Burkholderia glumae. The unique PCR primer sets were designed from portions of a putative glycosyltransferase gene of X. oryzae pv. oryzae, an Avr Rxo gene of X. oryzae pv. oryzicola, and an internal transcribed spacer(ITS) sequence of B. glumae. Using a multiplex PCR assay, X. oryzae pv. oryzae, X. oryzae pv. oryzicola, and B. glumae were detected in one PCR reaction that contained the newly developed primer set mix. Using SYBR Green real-time PCR assays, X. oryzae pv. oryzae, X. oryzae pv. oryzicola, and B. glumae were detected at 1, 1, and 10 fg μL-1, respectively. These newly designed molecular assays are sensitive and could be reliable tools for pathogen detection and disease forecasting.展开更多
Bacterial leaf streak, caused by Xanthomonas oryzae pv. oryzicola, is an important disease of rice (Oryza sativa). Genetic determinants (tatABC genes) of the twin-arginine translocation (Tat) pathway from X. ory...Bacterial leaf streak, caused by Xanthomonas oryzae pv. oryzicola, is an important disease of rice (Oryza sativa). Genetic determinants (tatABC genes) of the twin-arginine translocation (Tat) pathway from X. oryzae pv. oryzicola strain RsGD42 were cloned and characterized, meanwhile, a tatC disruption mutant was generated. The tatC mutant lacked detectable flagella and was highly impaired in motility and chemotaxis. Furthermore, it was observed that the tatC mutant exhibited a reduced production of extracellular polysaccharide (EPS) and a significant reduction of virulence on adult rice plants compared to wild type strain. However, the tatC mutation in X. oryzae pv. oryzieola strain RsGD42 did not affect the growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco (Nicotiana tabacum L. cv. Samsun). In conclusion, the data indicated that the Tat pathway significantly contributed to the virulence of X. oryzae pv. oryzicola.展开更多
文摘Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is possibly the most important disease of Brassica worldwide. To compare chromosomal positions of Xcc resistance loci in Brassica oleracea between the present and published studies and to develop marker assisted selection (MAS) to resistance against Xcc race 1, we constructed a B. oleracea map, including pW, pX and BoCL markers that were closely linked to previously reported Xcc resistance QTLs. We also analyzed Xcc resistance QTLs by improving our previously reported map derived from the cross of a susceptible double-haploid line (GC P09) with a resistant double-haploid line (Reiho P01). In the nine linkage groups obtained (C1-C9), the major QTL, XccBo(Reiho)2, was derived from Reiho with a maximum LOD score (7.7) in C8. The QTL (LOD 4.4) located in C9, XccBo(GC)1 was derived from the susceptible GC. The other QTL (LOD 4.4), XccBo(Reiho)1, was found in C5. Based on common markers, it was possible to compare our finding Xcc resistance QTLs with the B. oleraceaXcc loci reported by previous authors;XccBo(Reiho)1 and XccBo(GC)1 may be identical to the Xcc resistance QTLs reported previously or a different member contained in the same resistance gene cluster. Our map includes public SSR markers linked to Xcc resistance genes that will promote pyramiding Xcc resistance genes in B. oleracea. The present study will also contribute to a better understanding of genetic control of Xcc resistance.
文摘hrp mutants were produced from strain JXOIII of Xanthomonas oryzae pv. oryzae (Xoo) and strain RS105 of X.o. pv. oryzicola (Xooc), respectively, by using diethyl sulfate (DES) as a mutagenic che mical. All the hrp mutants lost their pathogenicity on a susceptible host plant, rice (Shanyou63), and elicitation of the hypersensitive response (HR) on a nonhost plant, tobacco (NC89). Extracellular enzyme (amy lase, pectate lyase, proteinase, cellulase and lipase) activities of all the hrp mutants were similar to those of the corresponding wild type strains. The response of tobacco to cell sonicated integrations of the wild type strains and the hrp mutants demonstrated that there existed an HR eliciting substance which was heat stable and sensitive to protease. No HR appeared on tobacco after infiltration of the lipopolysaccharide (LPS) of both the wild strains and hrp mutants into tobacco leaves. The ability of the Xooc hrp mutants to induce HR on tobacco and cause streak disease on rice was restored by complementation with pUHRX245 from JXOIII genomic DNA library and by pUHRS138 from RS105 genomic DNA library, respectively. Subcloning of a 38.6 kb hrp fragment insert in pUHRX245 and a 39.3 kb insert in pUHRS138 revealed that a 3.3 kb Sac Ⅰ fragment from pUHRX245 and a 4.5 kb Bam HⅠ Kpn Ⅰ fragment from pUHRS138 were the minimal functional portions required for restoration of the ability of Xooc hrp mutants to induce HR on tobacco and cause disease on rice. The disease symptom caused by the conjugant (M1005 plus 3.3 kb) on rice was similar to that caused by the wild type of Xooc. It suggests that the two fragments contain the same hrp gene(s) and are responsible reciprocally for HR induction on tobacco and pathogenicity on rice.
基金supported by the National Natural Science Foundation of China(31071656,31000071)the National Transgenic Major Program,China(2008ZX08001-002)the Special Fund for Agro-scientific Research in the Public Interest,China(NYHYZX07-056)
文摘Xanthomonas oryzae pv.oryzicola(Xoc) causes a destructive bacterial leaf streak disease in rice.Some of the gene products annotated as hypothetical proteins in the genome of Xoc may contribute to its virulence in rice.A mutant,Mxoc1679,screened from our previous Tn5-tagged mutant library for Xoc strain RS105,showed reduced virulence in rice.In this mutant,a gene named as Xoryp_08180 was disrupted by Tn5 insertion.Xoryp_08180 encodes a 1 306-aa hypothetical protein which is highly conserved in Xanthomonas spp.Non-polar mutation of Xoryp_08180 in RS105 strain led to a significant reduction in bacterial virulence and growth in rice,a delayed hypersensitive response(HR) in non-host tobacco,and a decrease in extracellular protease activity.The deficiencies above were restored to wild-type level in the complementary strain by expressing Xoryp_08180 in trans.In addition,the expression of Xoryp_08180 was repressed in hrpG and hrpX mutants in planta but not in a nutrient-rich condition.These results suggested that Xoryp_08180 is a virulence factor required for extracellular protease production,HR induction and full virulence of Xoc.
文摘The leaf, bark and seed extracts ofMoringa oleifera were evaluated for their efficacy under field conditions in suppressing Xanthomonas campestris pv. campestris in rape (Brassica napus. L.). Xanthomonas campestris pv. campestris is an important bacterial pathogen of agricultural importance causing devastating black rot disease of Brassicas. Three extracts concentrations of 60, 100 and 140% were sprayed as foliar applications weekly and the antibacterial activity was evaluated by recording number of totally defoliated plants. The three extracts showed significant effect against the test pathogen (p 〉 0.05). The antibacterial activity of seed extract demonstrated higher activity against the Xanthomonas campestris pv. campestris as evidenced by lower mean leaf defoliation of 1.59 cm followed by bark (2.58 cm) and lastly leaf extracts (2.96 cm) (p 〈 0.05). There were no significant differences based on the concentration levels used. Observations revealed that 100% and 140% levels were not significantly different from each other on enhancing growth of the stem diameter. Moringa seed at 60% concentration level can be used to enhance growth of rape. The conclusion is that Moringa seed extracts can be effectively implemented to suppress Xanthomonas campestris pv. campestris pathogen in field grown rape in an integrated disease control program.
基金Supported by the National Natural Science Fotmdation of China (No.30370939), Natural Science Foundation of Zhejiang Province (No.300054) and Science Research Plan of Zhejiang Province (No.2004C22005).
文摘A phytotoxin from Xanthomonas campestris pv. retroflexus was isolated using a chromatographer and HPLC, and the components were identified to be a mixture of minor molecular compounds including organic acids and cyclo-(proline-phenylalanine). The greenhouse cultivation test was used to determine the influence of the isolated fractions on the growth of target weed redroot pigweed (Amaranthus retroflexus L). The experimental results demonstrated that the cyclo-(Pro-Phe) had the weed inhibit activity obviously on dicotyledonous weed and the mixture with six organic acids showed stronger bioactivity. Further, greenhouse and field test were processed, and the test showed that the use of the toxin appeared to have the potential to be developed further as a bioherbicide system to control weedy grasses.
基金supported by the National Key R&D Program of China (2018YFD0201202 and 2017YFD0201108)the Agri-X Interdisciplinary Fund of Shanghai Jiao Tong University, China (Agri-X2017010)+1 种基金the Shanghai Committee of Science and Technology, China (19390743300)the National Natural Science Foundation of China (31200003)
文摘Horizontal gene transfer(HGT)has been well documented as a driving force in the evolution of bacteria.It has been shown that a horizontally acquired gene,xoc_2868,involved in the global response against oxidative stress and pathogenicity of Xanthomonas oryzae pv.oryzicola strain BLS256.However,as a transcriptional factor(TF),the regulatory mechanism of XOC_2868 has not yet been revealed.Here,evolutionary analysis suggested XOC_2868 might be co-transferred with its physically proximate downstream genes from a Burkholderiaceae ancestor.Interestingly,RNA-seq data of wild-type(BLS256)andΔxoc_2868 strains under oxidative stress showed that XOC_2868 did not regulate the expression of its adjacent genes,but remarkably influenced the expression of several genes involved in the extracellular polysaccharide(EPS)production and xanthan biosynthesis.Chromatin immunoprecipitation-sequence(ChIP-seq)combined with transcriptome analysis revealed that XOC_2868 directly regulates a cydAB operon,encoding two subunits of cytochrome bd oxidase and involved in redox balance.Consistent withΔxoc_2868 strain,cydA-and cydAB-knockout mutants also showed a higher sensitivity to H_(2)O_(2)along with a reduced bacterial virulence compared with the wild-type strain.Overall,our findings raise the possibility of regulatory circuit evolution shaped by HGT and driven by selection and reveal a novel regulatory pathway that regulates the expression of cytochrome bd oxidase and thus contributes to the virulence of BLS256.
基金supported by grants of the National Key R&D Program of China (Grants Nos.2016YFE0205500 and 2017YFD0101903)the earmarked fund for China Agriculture Research System (Grant No.CARS-23-G28)+2 种基金the China Postdoctoral Science Foundation (Grant No.2017M620305)Natural Science Foundation of Hubei Province (Grant No.2020CFA010)Youth Fund of Hubei Academy of Agricultural Sciences (Grant No.2021NKYJJ04)。
文摘Bacterial spot(BS)is a severe bacterial disease induced by Xanthomonas campestris pv.vesicatoria(Xcv),a pathogen that causes serious damage to pepper growth and yield.It is therefore important to study the mechanisms of pepper resistance to Xcv and to breed and promote Xcvresistant pepper varieties.However,studies of the responses to Xcv infection in peppers at the protein level are limited.Here,we examined Xcv-induced proteomic changes in leaves of the BS susceptible bell pepper ECW and the resistant bell pepper VI037601 using the isobaric tags for relative and absolute quantitation(iTRAQ)-based protein labeling technology.A total of 6,120 distinct proteins were identified,and there were 1,289 significantly differentially accumulated proteins(DAPs)in ECW and VI037601 leaves after Xcv inoculation.Among these,339(250up-and 89 down-regulated)and 479(300 up-and 179 down-regulated)DAPs were specifically identified in ECW and VI037601,respectively,with 459(364 up-and 95 down-regulated)similarly expressed DAPs being shared by ECW and VI037601.Based on bioinformatics analysis,many defense-associated proteins were identified as up-regulated in ECW and VI037601,especially the proteins involved in plant-pathogen interaction,phenylpropanoid biosynthesis,protein processing in the endoplasmic reticulum,and MAPK signaling pathway-plant.Moreover,we evaluated transcript levels of six differentially expressed genes from the iTRAQ results by q RT-PCR.The analysis revealed transcriptional changes that were consistent with the changes at the protein level.This study will provide a valuable resource for understanding the molecular basis of pepper resistance to Xcv infection and for improving the disease resistance of pepper cultivars.
基金Supported by the Ministry of Science and Technology and the Ministry of Agriculture of China(2014hzs1J007-2)
文摘Mango bacterial canker is caused by Xanthomonas campestris pv. mangiferaeindicae. During 2009 and 2013,leaves,twigs and fruits of mango were collected from commercial and experimental mango fields with typical canker symptoms in Hainan,Guangxi,Guangdong and Szechwan Provinces of China. The causal agent was identified as X. campestris pv. mangiferaeindicae through KC semi-selective medium isolation,pathogenicity tests,and sequencing of the gyrB gene.
基金supported by the National Natural Science Foundation of China (30710103902,31071656)the Ph D Programs Foundation of Ministry of Education of China (20100073110045)
文摘Xanthomonas oryzae pv.oryzicola (Xoc),the critical pathogen causing bacterial leaf streak in rice,possesses a hrp cluster that is responsible for triggering hypersensitive response (HR) in non-host tobacco and pathogenicity in host rice,and is considered to be one of the model pathogens in the rice model plant.Here,we developed a high-throughput mutagenesis system using a two-step integration mediated by a novel suicide vector pKMS1.It was used to generate single or poly-gene mutants of hpa1,hpa2,hrcV,hrpE,hpaB,and hrpF gene for functional analysis.In total,five single,four double,and two triple hrp gene mutants were constructed.The double and triple hrp gene deletion mutants triggered novel phenotypes in planta.Our data suggest that pKMS1 is a useful tool for non-marker mutagenesis of multiple genes in Xoc.
基金supported by the Ministry of Agriculture of China (201303015)the Key Basic Research Project of Shanghai Committee of Science and Technology, China (11JC1406300)the Ph D Programs Foundation of Ministry of Education of China (20100073110045)
文摘Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak, a devastating disease in rice-growing regions worldwide. A Tn5-insertion mutant in Xoc_3248, encoding an inner membrane protein (Imp), showed reduced virulence in rice. To explore the potential function of this gene in virulence, a deletion mutant R?imp was constructed in the wild-type RS105. The R?imp mutant was signiifcantly impaired for bacterial virulence and growth in planta. The mutation in imp made the pathogen insufifciently utilize glucose, fructose, mannose or pyruvate as a sole carbon source, leading to less extracellular polysaccharide (EPS) production and reduced motility. The deifciencies noted for the mutant were restored to wild-type levels when imp was introduced in trans. Transcription of imp was signiifcantly declined when hrpG and hrpX was mutated and the expression of hrpG and hrpX was also signiifcantly declined when imp was deleted. Cell sublocalization in planta showed Imp membrane-binding feature. These results suggest that Imp is a virulence factor with roles in the catabolism of sugars, EPS production, and bacterial motility.
基金support of the National 863 Project (2012AA021601)the New Seedling program for graduate students of Zhejiang Province (2012R409012)
文摘The polymerase chain reaction(PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR Green real-time PCR were developed to facilitate the simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv.oryzae, X. oryzae pv. oryzicola, and Burkholderia glumae. The unique PCR primer sets were designed from portions of a putative glycosyltransferase gene of X. oryzae pv. oryzae, an Avr Rxo gene of X. oryzae pv. oryzicola, and an internal transcribed spacer(ITS) sequence of B. glumae. Using a multiplex PCR assay, X. oryzae pv. oryzae, X. oryzae pv. oryzicola, and B. glumae were detected in one PCR reaction that contained the newly developed primer set mix. Using SYBR Green real-time PCR assays, X. oryzae pv. oryzae, X. oryzae pv. oryzicola, and B. glumae were detected at 1, 1, and 10 fg μL-1, respectively. These newly designed molecular assays are sensitive and could be reliable tools for pathogen detection and disease forecasting.
基金supported by the National Natural Science Foundation of China (30070497)the Research and Development Special Fund for Public Welfare Industry of China (NYHYZX07-056)
文摘Bacterial leaf streak, caused by Xanthomonas oryzae pv. oryzicola, is an important disease of rice (Oryza sativa). Genetic determinants (tatABC genes) of the twin-arginine translocation (Tat) pathway from X. oryzae pv. oryzicola strain RsGD42 were cloned and characterized, meanwhile, a tatC disruption mutant was generated. The tatC mutant lacked detectable flagella and was highly impaired in motility and chemotaxis. Furthermore, it was observed that the tatC mutant exhibited a reduced production of extracellular polysaccharide (EPS) and a significant reduction of virulence on adult rice plants compared to wild type strain. However, the tatC mutation in X. oryzae pv. oryzieola strain RsGD42 did not affect the growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco (Nicotiana tabacum L. cv. Samsun). In conclusion, the data indicated that the Tat pathway significantly contributed to the virulence of X. oryzae pv. oryzicola.