Carbamoyl-phosphate synthase plays a vital role in the carbon and nitrogen metabolism cycles. In Xanthomonas citrisubsp. citri, carA and carB encode the small and large subunits of carbamoyl-phosphate synthase, respec...Carbamoyl-phosphate synthase plays a vital role in the carbon and nitrogen metabolism cycles. In Xanthomonas citrisubsp. citri, carA and carB encode the small and large subunits of carbamoyl-phosphate synthase, respectively. The deletion mutation of the coding regions revealed that carA did not affect any of the phenotypes, while carB played multiple roles in pathogenicity. The deletion of carB rendered the loss of pathogenicity in host plants and the ability to induce a hyper- sensitive reaction in the non-hosts. Quantitative reverse transcription-PCR assays indicated that 11 hrp genes coding the type Ill secretion system were suppressed when interacting with citrus plants. The mutation in carB also affected bacterial utilization of several carbon and nitrogen resources in minimal medium MMX and extracellular enzyme activities. These data demonstrated that only the large subunit of carbamoyl-phosphate synthase was essential for canker development by X. citri subsp, citri.展开更多
Xcc (Xanthomonas citri subsp, citri) causes citrus bacterial canker, a leaf, stem and fruit spotting disease that affects most commercial citrus species and cultivars. Copper compounds, widely used for management of...Xcc (Xanthomonas citri subsp, citri) causes citrus bacterial canker, a leaf, stem and fruit spotting disease that affects most commercial citrus species and cultivars. Copper compounds, widely used for management of this pathogen, have been reported as inducers of a VBNC (viable but non-culturable state) in plant pathogenic bacteria. VBNC may be considered as a state preceding bacterial death or as a survival mechanism under adverse conditions. Several experiments were performed to characterize the reversibility and persistence of the VBNC state in Xcc. VBNC was induced in low nutrient medium or with amendment of copper at concentrations used for field disease control. The VBNC condition was demonstrated to persist up to 150 days after copper treatment and was reversed after the addition of culture media without copper or amendment with citrus leaf extract. Xcc viability was evaluated by recovery of colonies on culture media, confirmed by membrane integrity, respiratory activity and by real-time RT-PCR targeting a sequence from the gumD gene. Besides, the colonies recovered were pathogenic on citrus leaves. These results confirm that the VBNC state in Xcc is inducible and reversible and therefore may occur in the phyllosphere when Xcc is under copper stress or starvation.展开更多
The sigma factor 54(σ^(54)) controls the expression of many genes in response to nutritional and environmental conditions. There are two σ^(54) genes, rpo N1(XAC1969) and rpo N2(XAC2972), in Xanthomonas ci...The sigma factor 54(σ^(54)) controls the expression of many genes in response to nutritional and environmental conditions. There are two σ^(54) genes, rpo N1(XAC1969) and rpo N2(XAC2972), in Xanthomonas citri subsp. citri. To investigate their functions, the deletion mutants ΔrpoN1, ΔrpoN2 and ΔrpoN1N2 were constructed in this study. All the mutants delayed canker development in low concentration inoculation in citrus plants. The bacterial growth of mutants was retarded in the medium supplemented with nitrogen and carbon resources. Under either condition, the influence degree caused by deletion of rpoN 2 was larger than the deletion of rpoN 1. Remarkably, the mutant ΔrpoN 1 showed a reduction in cell motility, while the mutant Δrpo N2 increased cell motility. Our data suggested that the rpoN 1 and rpoN 2 play diverse roles in X. citri subsp. citri.展开更多
Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeos...Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeostasis in plants, especially in relation to abiotic and biotic stress responses. However, the function of GSTs in resisting CBC remains unclear. Here, citrus glutathione S-transferases were investigated applying a genome-wide approach. In total, 69 CsGSTs belonging to seven classes were identified, and the phylogeny, chromosomal distribution, gene structures and conserved motifs were analyzed. Several CsGSTs responded to Xcc infection, as observed in the upregulation of CsGSTF1 and CsGSTU18 in the CBC-sensitive ‘Wanjincheng' variety but not in the resistant ‘Kumquat' variety. CsGSTF1 and CsGSTU18 were localized at the cytoplasm. Transient overexpression of CsGSTF1 and CsGSTU18 mediated reactive oxygen species(ROS) scavenging, whereas the virus-induced gene silencing(VIGS) of CsGSTF1 and CsGSTU18 caused strong CBC resistance and ROS burst. The present study investigated the characterization of citrus GST gene family, and discovered that CsGSTF1 and CsGSTU18 negatively contributed to CBC through modulating ROS homeostasis. These findings emphasize the significance of GSTs in infection resistance in plants.展开更多
基金supported by the National Natural Science Foundation of China (31171832)the Special Fund for Agro-Scientific Research in the Public Interest, China (201003067)
文摘Carbamoyl-phosphate synthase plays a vital role in the carbon and nitrogen metabolism cycles. In Xanthomonas citrisubsp. citri, carA and carB encode the small and large subunits of carbamoyl-phosphate synthase, respectively. The deletion mutation of the coding regions revealed that carA did not affect any of the phenotypes, while carB played multiple roles in pathogenicity. The deletion of carB rendered the loss of pathogenicity in host plants and the ability to induce a hyper- sensitive reaction in the non-hosts. Quantitative reverse transcription-PCR assays indicated that 11 hrp genes coding the type Ill secretion system were suppressed when interacting with citrus plants. The mutation in carB also affected bacterial utilization of several carbon and nitrogen resources in minimal medium MMX and extracellular enzyme activities. These data demonstrated that only the large subunit of carbamoyl-phosphate synthase was essential for canker development by X. citri subsp, citri.
文摘Xcc (Xanthomonas citri subsp, citri) causes citrus bacterial canker, a leaf, stem and fruit spotting disease that affects most commercial citrus species and cultivars. Copper compounds, widely used for management of this pathogen, have been reported as inducers of a VBNC (viable but non-culturable state) in plant pathogenic bacteria. VBNC may be considered as a state preceding bacterial death or as a survival mechanism under adverse conditions. Several experiments were performed to characterize the reversibility and persistence of the VBNC state in Xcc. VBNC was induced in low nutrient medium or with amendment of copper at concentrations used for field disease control. The VBNC condition was demonstrated to persist up to 150 days after copper treatment and was reversed after the addition of culture media without copper or amendment with citrus leaf extract. Xcc viability was evaluated by recovery of colonies on culture media, confirmed by membrane integrity, respiratory activity and by real-time RT-PCR targeting a sequence from the gumD gene. Besides, the colonies recovered were pathogenic on citrus leaves. These results confirm that the VBNC state in Xcc is inducible and reversible and therefore may occur in the phyllosphere when Xcc is under copper stress or starvation.
基金supported by the National Natural Science Foundation of China(31171832)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(11)4056)
文摘The sigma factor 54(σ^(54)) controls the expression of many genes in response to nutritional and environmental conditions. There are two σ^(54) genes, rpo N1(XAC1969) and rpo N2(XAC2972), in Xanthomonas citri subsp. citri. To investigate their functions, the deletion mutants ΔrpoN1, ΔrpoN2 and ΔrpoN1N2 were constructed in this study. All the mutants delayed canker development in low concentration inoculation in citrus plants. The bacterial growth of mutants was retarded in the medium supplemented with nitrogen and carbon resources. Under either condition, the influence degree caused by deletion of rpoN 2 was larger than the deletion of rpoN 1. Remarkably, the mutant ΔrpoN 1 showed a reduction in cell motility, while the mutant Δrpo N2 increased cell motility. Our data suggested that the rpoN 1 and rpoN 2 play diverse roles in X. citri subsp. citri.
基金funded by the National Key Research and Development Program of China (Grant No.2022YFD1201600)Natural Science Foundation of Chongqing (Grant No.cstc2020jcyj-msxmX1064)+1 种基金Earmarked Funds for the China Agriculture Research System (Grant No.CARS-26)Three-year Action Plan of Xi'an University (Grant No.2021XDJH41)。
文摘Citrus bacterial canker(CBC) is resulted from Xanthomonas citri subsp. citri(Xcc) infection and poses a significant threat to citrus production.Glutathione S-transferases(GSTs) are critical in maintaining redox homeostasis in plants, especially in relation to abiotic and biotic stress responses. However, the function of GSTs in resisting CBC remains unclear. Here, citrus glutathione S-transferases were investigated applying a genome-wide approach. In total, 69 CsGSTs belonging to seven classes were identified, and the phylogeny, chromosomal distribution, gene structures and conserved motifs were analyzed. Several CsGSTs responded to Xcc infection, as observed in the upregulation of CsGSTF1 and CsGSTU18 in the CBC-sensitive ‘Wanjincheng' variety but not in the resistant ‘Kumquat' variety. CsGSTF1 and CsGSTU18 were localized at the cytoplasm. Transient overexpression of CsGSTF1 and CsGSTU18 mediated reactive oxygen species(ROS) scavenging, whereas the virus-induced gene silencing(VIGS) of CsGSTF1 and CsGSTU18 caused strong CBC resistance and ROS burst. The present study investigated the characterization of citrus GST gene family, and discovered that CsGSTF1 and CsGSTU18 negatively contributed to CBC through modulating ROS homeostasis. These findings emphasize the significance of GSTs in infection resistance in plants.