Background: Cyanobacteria phycocyanins (Cps) have already shown powerful antioxidant properties. In human cells submitted to oxidative stress the telomeres length decrease, the expression of progerin and the activity ...Background: Cyanobacteria phycocyanins (Cps) have already shown powerful antioxidant properties. In human cells submitted to oxidative stress the telomeres length decrease, the expression of progerin and the activity of mTOR are increased. At our knowledge, there is no published data on Cps correlated with ultraviolet radiation (UV) and blue light effects in human cells regarding telomeres’ length, progerin expression or mTOR1 complex activity. Objectives: In this study, we sought to assess 1) telomeres’ length in newborn human fibroblasts exposed to UV and blue light;2) progerin production in mature human normal fibroblasts exposed to UV;3) mTOR1 activation in adult human normal keratinocytes exposed to UV, analyzing the activity of a Cyanobacteria phycocyanin (Cp) in these in vitro models. Materials and Methods: Human skin fibroblasts or human normal keratinocytes were cultured—in the absence or in the presence of Cp and submitted to UVB + UVA and blue light irradiations. Telomeres’ length, progerin expression and mTOR1 activity were then assessed by molecular biology and immuno-enzymatic methods. Results: In cultured fibroblasts exposed to irradiations and treated by Cp, telomeres’ shortage and progerin expression were lower compared to irradiated untreated cells. In cultured keratinocytes treated by Cp and exposed to irradiations, the mTOR activity was lower compared to irradiated untreated cells. Conclusions: In these in vitro studies on human skin fibroblasts and on normal human keratinocytes, the cyanobacteria phycocyanin (Cp) showed a decrease of damages induced by UV and blue light expressed by telomeres preservation and downregulation of progerin expression and of mTOR activity, thus showing skin anti-aging and photo-protective potential.展开更多
The light-aging test method commonly used in the automotive industry is utilized to carry out light- aging research on automotive instrument panel (IP) materials and bumper materials. On one hand, the impacts of com...The light-aging test method commonly used in the automotive industry is utilized to carry out light- aging research on automotive instrument panel (IP) materials and bumper materials. On one hand, the impacts of common light-aging test methods on aging degree of automotive component materials are reviewed; on the other hand, the light-aging resistances of different component materials are compared. The results show that, for light-aging behavior of IP materials, the aging degree of the third test method is not severer than that of the second method, but it is severer than that of the first method. The light-aging resistance of IP material A is al- most the same as that of IP material B. With reference to light-aging behavior of bumper materials, the aging de- gree of three common test methods indicates that the aging degree of the sixth test method is not severer than that of the fourth method, but it is severer than that of the fifth method. The light-aging resistance of bumper material D is superior to that of bumper material C.展开更多
Ag–AgX(X = Cl, Br)@TiO_2 nanoparticle-aggregated spheres with different mass ratio of R = TiO2/Ag(X) from 35:1 to 5:1 were synthesized by a facile sol–gel technique with post-photoreduction. The photocatalytic activ...Ag–AgX(X = Cl, Br)@TiO_2 nanoparticle-aggregated spheres with different mass ratio of R = TiO2/Ag(X) from 35:1 to 5:1 were synthesized by a facile sol–gel technique with post-photoreduction. The photocatalytic activities of both Ag–Ag Cl@TiO_2 and Ag–Ag Br@TiO_2 under visible light are effectively improved by ~3 times relative to TiO_2 NPAS under the simulated sunlight for the decomposition of methyl orange(MO). Ag–AgBr@TiO_2 showed 30% improvement and less stable in photocatalytic activity than that of AgCl@TiO_2. The role of Ag and Ag X nanoparticles on the surface of Ag–Ag X(X = Cl,Br)@TiO_2 was discussed. Ag on these samples not onlycan efficiently harvest visible light especially for Ag Cl, but also efficiently separate excited electrons and holes via the fast electron transfer from Ag X(X = Cl, Br) to metal Ag nanoparticles and then to TiO_2-aggregated spheres on the surface of heterostructure. On the basis of their efficient and stable photocatalytic activities under visible-light irradiation, these photocatalysts could be widely used for degradation of organic pollutants in aqueous solution.展开更多
The Songxi deposit is a newly discovered large Ag (Sb) deposit. By using a suite of high-vacuum quadrupole gas mass spectrometer systems, the authors have recognized many kinds of light hydrocarbons in fluid inclusion...The Songxi deposit is a newly discovered large Ag (Sb) deposit. By using a suite of high-vacuum quadrupole gas mass spectrometer systems, the authors have recognized many kinds of light hydrocarbons in fluid inclusions of minerals. These hydrocarbons are mainly composed of C1-C4 saturated alkanes, while the contents of C2-C4 unsaturated alkenes and aromatic hydrocarbons are quite low, suggesting that the metallogenic processes have not been affected by magmatic activities. Chemical equilibrium studies show that these hydrocarbons may be a mixture of organic gases generated by microorganism activity and those by thermal cracking of type-n kerogens (kukersite) in sedimentary host rocks, and the former may constitute more than two-thirds, implying that microorganism might have played an important role in the metallogenesis. The equilibrium temperature of the latter is about 300℃, which is much higher than the geothermal temperature at the estimated depth of metallogenesis. Thus, the light hydrocarbons generated by thermal cracking of kerogens probably originated in the deep part of the sedimentary basins and then migrated through a long distance to shallower horizons of the basin. Based on the composition of light hydrocarbons in fluid inclusions, the authors infer that the Songxi deposit was formed in a continental rift. The analytical data presented in this paper support from one aspect the genetic model that the Songxi deposit may be a sedimentary hot brine transformed deposit instead of a submarine basic volcanic exhalation and low-medium temperature volcanic hydrothermal fluid filling deposit proposed by most previous researchers.展开更多
Ag3PO4has good potential for use in photocatalytic degradation of organic contaminants.However,the activity and stability of Ag3PO4is hard to sustain because of photocorrosion and the positive potential of the conduct...Ag3PO4has good potential for use in photocatalytic degradation of organic contaminants.However,the activity and stability of Ag3PO4is hard to sustain because of photocorrosion and the positive potential of the conduction band of Ag3PO4.In this study,A composite consisting of Bi2WO6nanosheets and Ag3PO4was developed to curb recombination of charge carriers and enhance the activity and stability of the catalyst.Formation of a Ag3PO4/Bi2WO6composite was confirmed using X‐ray diffraction,energy‐dispersive X‐ray spectroscopy,and X‐ray photoelectron spectroscopy.Photoluminescence spectroscopy provided convincing evidence that compositing Bi2WO6with Ag3PO4effectively reduced photocorrosion of Ag3PO4.The Ag3PO4/Bi2WO6composite gave a high photocatalytic performance in photodegradation of methylene blue.A degradation rate of0.61min?1was achieved;this is1.3and6.0times higher than those achieved using Ag3PO4(0.47min?1)and Bi2WO6(0.10min?1),respectively.Reactive species trapping experiments using the Ag3PO4/Bi2WO6composite showed that holes,?OH,and?O2?all played specific roles in the photodegradation process.The photocatalytic mechanism was investigated and a Z‐scheme was proposed as a plausible mechanism.展开更多
UiO-66-NH2, as typical visible light responsive Zr-based metal-organic frameworks (MOFs), has attracted great interest in recent years. However, rapid combination of the photoinduced carriers limits its further applic...UiO-66-NH2, as typical visible light responsive Zr-based metal-organic frameworks (MOFs), has attracted great interest in recent years. However, rapid combination of the photoinduced carriers limits its further application. Here, we designed a facile precipitation-photoreduction method to post-synthetically decorate Ag/AgCl on the surface of UiO-66-NH2 and form a heterostructure. Metallic Ag can not only transmit electrons between UiO-66-NH2 and AgCl but also absorb visible light, because of the surface plasmon resonance (SPR) effect. The rhodamine B photodegradation rate of UiO-66-NH2/Ag/AgCl (16.2 wt.% Ag) is about 10 and 4 times those of UiO-66-NH2 and Ag/AgCl, respectively. The SPR effect of Ag NPs and the formation of a heterostructure synergistically increase the absorbability of visible light, accelerate the separation of photoinduced charges, and promote the formation of superoxide radicals. We expect that our work could provide a new viewpoint for constructing efficient MOF-based photocatalytic systems.展开更多
A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scan...A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).展开更多
We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structu...We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structured layers was performed by increasing the deposition temperature of the Al layers to 270℃. The highly submicro-textured silver and aluminum double-structured layers were prepared by thermal evaporation on quartz glasses and their surface microstructure, light scattering properties, and thermal stability were investigated. Results showed that the highly submicro-textured Ag/Al composite films prepared at low substrate temperatures used as back reflectors not only can enhance the light scattering and have good thermal stability, but also have good adhesion properties. In addition, their fabrication is low cost and readily carried out.展开更多
Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a ...Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffusion re?ection spectroscopy. This metal-semiconductor nanocomposite plasmonic photocatalyst exhibited a high visible-light photocatalytic activity and good stability for photocatalytic degradation of methyl orange in water. Ag-AgCl/CeO2 will be a potentially promising plasmonic photocatalysts for organic pollutant degradation and water purification.展开更多
In this study, the Ag/Ag Cl/WO3 plasmonic Z-scheme photocatalysts with different contents of Ag/Ag Cl nanoparticles(NPs) were prepared through a facile ultrasonic precipitation method in geothermal water,wherein the...In this study, the Ag/Ag Cl/WO3 plasmonic Z-scheme photocatalysts with different contents of Ag/Ag Cl nanoparticles(NPs) were prepared through a facile ultrasonic precipitation method in geothermal water,wherein the geothermal water served as the chlorine source. Then the photocatalytic activity was investigated by degradation of 4-Aminobenzoic acid(4-ABA) under visible-light irradiation. It was found that the as-prepared 50 wt% Ag/Ag Cl/WO3 photocatalyst showed the highest photocatalytic efficiency with 25.12 and 3.53 times higher than those of pure WO3 and Ag/Ag Cl, respectively. The active species trapping experiments indicated that h+and ·O2-were key factors in 4-ABA photodegradation process. The possible plasmonic Z-scheme photocatalytic mechanism of photocatalytic reaction for 4-ABA degradation was proposed based on systematical characterizations. We hope this paper could give new ideas for further exploiting geothermal energy to design and fabricate highly efficient visible-light-driven photocatalysts for environmental remediation.展开更多
AIM: To investigate the roles of PKC-α/ezrin signals in phagocytosis crisis of retinal pigment epithelium(RPE) cells in light damage model. METHODS: Light induced mice RPE injury model was established by continuo...AIM: To investigate the roles of PKC-α/ezrin signals in phagocytosis crisis of retinal pigment epithelium(RPE) cells in light damage model. METHODS: Light induced mice RPE injury model was established by continuously irradiating cool white light at different exposure time(0, 4, 8h light intensity: 4.18×10^-6 J/cm^2). In vitro, human ARPE-19 cells treated with the doses and intensity(1.57×10^-6 J/cm^2) of laser irradiation. Histology analysis was evaluated by hematoxylin and eosin(HE) staining. In vivo RPE phagocytosis was quantified by measuring the accumulation of photoreceptor outer segments in the sub-retinal space. In vitro RPE phagocytosis was assessed by calculating the relative fluorescence intensity of FITC-labeled microspheres in ARPE-19 cells. To further investigate the molecular mechanism, the activation of PKC-α/ezrin signal was evaluated by Western blot in vivo and in vitro.RESULTS: HE staining revealed that the thickness of outer nuclear layer decreased significantly after 4 and 8h light exposure. By immunostaining with rhodopsin, a significant greater accumulation of photoreceptor outer segment was noticed after light injury. In vitro, light injuredRPE cells had less phagocytic activity in a dose dependent manner than that of the normal control(P〈0.01). Western blot suggested the activation of PKC-α/ezrin signaling was down-regulated in a dose-dependent manner after light exposure. CONCLUSION: Our data suggest that light induced phagocytic crisis of RPE cells may result from the downregulation of PKC-α/ezrin signaling.展开更多
文摘Background: Cyanobacteria phycocyanins (Cps) have already shown powerful antioxidant properties. In human cells submitted to oxidative stress the telomeres length decrease, the expression of progerin and the activity of mTOR are increased. At our knowledge, there is no published data on Cps correlated with ultraviolet radiation (UV) and blue light effects in human cells regarding telomeres’ length, progerin expression or mTOR1 complex activity. Objectives: In this study, we sought to assess 1) telomeres’ length in newborn human fibroblasts exposed to UV and blue light;2) progerin production in mature human normal fibroblasts exposed to UV;3) mTOR1 activation in adult human normal keratinocytes exposed to UV, analyzing the activity of a Cyanobacteria phycocyanin (Cp) in these in vitro models. Materials and Methods: Human skin fibroblasts or human normal keratinocytes were cultured—in the absence or in the presence of Cp and submitted to UVB + UVA and blue light irradiations. Telomeres’ length, progerin expression and mTOR1 activity were then assessed by molecular biology and immuno-enzymatic methods. Results: In cultured fibroblasts exposed to irradiations and treated by Cp, telomeres’ shortage and progerin expression were lower compared to irradiated untreated cells. In cultured keratinocytes treated by Cp and exposed to irradiations, the mTOR activity was lower compared to irradiated untreated cells. Conclusions: In these in vitro studies on human skin fibroblasts and on normal human keratinocytes, the cyanobacteria phycocyanin (Cp) showed a decrease of damages induced by UV and blue light expressed by telomeres preservation and downregulation of progerin expression and of mTOR activity, thus showing skin anti-aging and photo-protective potential.
文摘The light-aging test method commonly used in the automotive industry is utilized to carry out light- aging research on automotive instrument panel (IP) materials and bumper materials. On one hand, the impacts of common light-aging test methods on aging degree of automotive component materials are reviewed; on the other hand, the light-aging resistances of different component materials are compared. The results show that, for light-aging behavior of IP materials, the aging degree of the third test method is not severer than that of the second method, but it is severer than that of the first method. The light-aging resistance of IP material A is al- most the same as that of IP material B. With reference to light-aging behavior of bumper materials, the aging de- gree of three common test methods indicates that the aging degree of the sixth test method is not severer than that of the fourth method, but it is severer than that of the fifth method. The light-aging resistance of bumper material D is superior to that of bumper material C.
基金supported by the China Postdoctoral Science Foundation (2016M602647)the Science and Technology Research Project of Chongqing Municipal Education Commission of China (KJ1400607)+3 种基金the Fundamental Research Funds for the Central Universities (CQDXWL-2014-001)NSFCQ (cstc2015jcyj A20020)NSFC (51572040, 51402112)National High Technology Research and Development Program of China (2015AA034801)
文摘Ag–AgX(X = Cl, Br)@TiO_2 nanoparticle-aggregated spheres with different mass ratio of R = TiO2/Ag(X) from 35:1 to 5:1 were synthesized by a facile sol–gel technique with post-photoreduction. The photocatalytic activities of both Ag–Ag Cl@TiO_2 and Ag–Ag Br@TiO_2 under visible light are effectively improved by ~3 times relative to TiO_2 NPAS under the simulated sunlight for the decomposition of methyl orange(MO). Ag–AgBr@TiO_2 showed 30% improvement and less stable in photocatalytic activity than that of AgCl@TiO_2. The role of Ag and Ag X nanoparticles on the surface of Ag–Ag X(X = Cl,Br)@TiO_2 was discussed. Ag on these samples not onlycan efficiently harvest visible light especially for Ag Cl, but also efficiently separate excited electrons and holes via the fast electron transfer from Ag X(X = Cl, Br) to metal Ag nanoparticles and then to TiO_2-aggregated spheres on the surface of heterostructure. On the basis of their efficient and stable photocatalytic activities under visible-light irradiation, these photocatalysts could be widely used for degradation of organic pollutants in aqueous solution.
基金supported by the National Natural Science Foundation of China(grants 49502029,49928201 and 49773195)the Natural Sciences Foundation of Guangdong Province(No.970123)+3 种基金the Visiting Scholar Foundation of Labs in Universitiesthe Research Foundation of the State Key Laboratory for Mineral Deposits Research in Nanjing UniversityResearch Foundation of Young(originally translated as Youth)Teachers of the National Educational Department and the Training Program of Middle-aged and Young(originally translated as Medium-Youth)Teachers supported by the Lingnan Foundationsupported by the Trans-century Training Program Foundation for the Talents by the Ministry of Education
文摘The Songxi deposit is a newly discovered large Ag (Sb) deposit. By using a suite of high-vacuum quadrupole gas mass spectrometer systems, the authors have recognized many kinds of light hydrocarbons in fluid inclusions of minerals. These hydrocarbons are mainly composed of C1-C4 saturated alkanes, while the contents of C2-C4 unsaturated alkenes and aromatic hydrocarbons are quite low, suggesting that the metallogenic processes have not been affected by magmatic activities. Chemical equilibrium studies show that these hydrocarbons may be a mixture of organic gases generated by microorganism activity and those by thermal cracking of type-n kerogens (kukersite) in sedimentary host rocks, and the former may constitute more than two-thirds, implying that microorganism might have played an important role in the metallogenesis. The equilibrium temperature of the latter is about 300℃, which is much higher than the geothermal temperature at the estimated depth of metallogenesis. Thus, the light hydrocarbons generated by thermal cracking of kerogens probably originated in the deep part of the sedimentary basins and then migrated through a long distance to shallower horizons of the basin. Based on the composition of light hydrocarbons in fluid inclusions, the authors infer that the Songxi deposit was formed in a continental rift. The analytical data presented in this paper support from one aspect the genetic model that the Songxi deposit may be a sedimentary hot brine transformed deposit instead of a submarine basic volcanic exhalation and low-medium temperature volcanic hydrothermal fluid filling deposit proposed by most previous researchers.
基金supported by the National Natural Science Foundation of China(51572103,51502106)the Foundation for Young Talents in College of Anhui Province(gxyqZD201751)~~
文摘Ag3PO4has good potential for use in photocatalytic degradation of organic contaminants.However,the activity and stability of Ag3PO4is hard to sustain because of photocorrosion and the positive potential of the conduction band of Ag3PO4.In this study,A composite consisting of Bi2WO6nanosheets and Ag3PO4was developed to curb recombination of charge carriers and enhance the activity and stability of the catalyst.Formation of a Ag3PO4/Bi2WO6composite was confirmed using X‐ray diffraction,energy‐dispersive X‐ray spectroscopy,and X‐ray photoelectron spectroscopy.Photoluminescence spectroscopy provided convincing evidence that compositing Bi2WO6with Ag3PO4effectively reduced photocorrosion of Ag3PO4.The Ag3PO4/Bi2WO6composite gave a high photocatalytic performance in photodegradation of methylene blue.A degradation rate of0.61min?1was achieved;this is1.3and6.0times higher than those achieved using Ag3PO4(0.47min?1)and Bi2WO6(0.10min?1),respectively.Reactive species trapping experiments using the Ag3PO4/Bi2WO6composite showed that holes,?OH,and?O2?all played specific roles in the photodegradation process.The photocatalytic mechanism was investigated and a Z‐scheme was proposed as a plausible mechanism.
基金supported by the National Natural Science Foundation of China(21676182)the National Basic Research Program of China(973 Program,2014CB932403)the Program for Introducing Talents of Discipline to Universities of China(B06006)
文摘UiO-66-NH2, as typical visible light responsive Zr-based metal-organic frameworks (MOFs), has attracted great interest in recent years. However, rapid combination of the photoinduced carriers limits its further application. Here, we designed a facile precipitation-photoreduction method to post-synthetically decorate Ag/AgCl on the surface of UiO-66-NH2 and form a heterostructure. Metallic Ag can not only transmit electrons between UiO-66-NH2 and AgCl but also absorb visible light, because of the surface plasmon resonance (SPR) effect. The rhodamine B photodegradation rate of UiO-66-NH2/Ag/AgCl (16.2 wt.% Ag) is about 10 and 4 times those of UiO-66-NH2 and Ag/AgCl, respectively. The SPR effect of Ag NPs and the formation of a heterostructure synergistically increase the absorbability of visible light, accelerate the separation of photoinduced charges, and promote the formation of superoxide radicals. We expect that our work could provide a new viewpoint for constructing efficient MOF-based photocatalytic systems.
基金supported by the National Natural Science Foundation of China(41573118)Research Foundation of Education Bureau of Hunan Province,China(14B177)Special Project of Xiangtan University~~
文摘A novel plasmonic photo‐Fenton catalyst of Ag/AgCl/Fe‐S was synthesized by ion exchange and photoreduction methods.The obtained catalyst was characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,scanning electron microscope imaging,and Brunauer‐Emmett‐Teller measurements.Moreover,the photocatalytic activity of Ag/AgCl/Fe‐S was investigated for its degradation activity towards bisphenol A(BPA)as target pollutant under visible light irradiation.The effects of H2O2concentration,pH value,illumination intensity,and catalyst dosage on BPA degradation were examined.Our results indicated that the Ag/AgCl material was successfully loaded onto Fe‐sepiolite and showed a high photocatalytic activity under illumination by visible light.Furthermore,active species capture experiments were performed to explore the photocatalytic mechanism of the Ag/AgCl/Fe‐S in this heterogeneous photo‐Fenton process,where the major active species included hydroxyl radicals(?OH)and holes(h+).
基金the National Natural Science Foundation of China(Grant No.60977028)the Key Project Foundation of Shanghai,China(Grant No.09JC1413800)
文摘We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structured layers was performed by increasing the deposition temperature of the Al layers to 270℃. The highly submicro-textured silver and aluminum double-structured layers were prepared by thermal evaporation on quartz glasses and their surface microstructure, light scattering properties, and thermal stability were investigated. Results showed that the highly submicro-textured Ag/Al composite films prepared at low substrate temperatures used as back reflectors not only can enhance the light scattering and have good thermal stability, but also have good adhesion properties. In addition, their fabrication is low cost and readily carried out.
文摘Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffusion re?ection spectroscopy. This metal-semiconductor nanocomposite plasmonic photocatalyst exhibited a high visible-light photocatalytic activity and good stability for photocatalytic degradation of methyl orange in water. Ag-AgCl/CeO2 will be a potentially promising plasmonic photocatalysts for organic pollutant degradation and water purification.
基金the financial support by the National Natural Science Foundation of China (grant no. 51272107 and 51372118)the Doctor Discipline Special Research Foundation of Chinese Ministry of Education (grant no. 20133219110015)
文摘In this study, the Ag/Ag Cl/WO3 plasmonic Z-scheme photocatalysts with different contents of Ag/Ag Cl nanoparticles(NPs) were prepared through a facile ultrasonic precipitation method in geothermal water,wherein the geothermal water served as the chlorine source. Then the photocatalytic activity was investigated by degradation of 4-Aminobenzoic acid(4-ABA) under visible-light irradiation. It was found that the as-prepared 50 wt% Ag/Ag Cl/WO3 photocatalyst showed the highest photocatalytic efficiency with 25.12 and 3.53 times higher than those of pure WO3 and Ag/Ag Cl, respectively. The active species trapping experiments indicated that h+and ·O2-were key factors in 4-ABA photodegradation process. The possible plasmonic Z-scheme photocatalytic mechanism of photocatalytic reaction for 4-ABA degradation was proposed based on systematical characterizations. We hope this paper could give new ideas for further exploiting geothermal energy to design and fabricate highly efficient visible-light-driven photocatalysts for environmental remediation.
基金Supported by the National Natural Science Foundation of China(No.81641057)the Natural Science Foundation of Liaoning Province(No.201602292No.201602298)
文摘AIM: To investigate the roles of PKC-α/ezrin signals in phagocytosis crisis of retinal pigment epithelium(RPE) cells in light damage model. METHODS: Light induced mice RPE injury model was established by continuously irradiating cool white light at different exposure time(0, 4, 8h light intensity: 4.18×10^-6 J/cm^2). In vitro, human ARPE-19 cells treated with the doses and intensity(1.57×10^-6 J/cm^2) of laser irradiation. Histology analysis was evaluated by hematoxylin and eosin(HE) staining. In vivo RPE phagocytosis was quantified by measuring the accumulation of photoreceptor outer segments in the sub-retinal space. In vitro RPE phagocytosis was assessed by calculating the relative fluorescence intensity of FITC-labeled microspheres in ARPE-19 cells. To further investigate the molecular mechanism, the activation of PKC-α/ezrin signal was evaluated by Western blot in vivo and in vitro.RESULTS: HE staining revealed that the thickness of outer nuclear layer decreased significantly after 4 and 8h light exposure. By immunostaining with rhodopsin, a significant greater accumulation of photoreceptor outer segment was noticed after light injury. In vitro, light injuredRPE cells had less phagocytic activity in a dose dependent manner than that of the normal control(P〈0.01). Western blot suggested the activation of PKC-α/ezrin signaling was down-regulated in a dose-dependent manner after light exposure. CONCLUSION: Our data suggest that light induced phagocytic crisis of RPE cells may result from the downregulation of PKC-α/ezrin signaling.