Setting up the hypostratotype of late Precambrian is the main aim of the research on the Meso- and Neoproterozoic in North China. The chronostratigraphic position is the key in this study. However, many key horizons h...Setting up the hypostratotype of late Precambrian is the main aim of the research on the Meso- and Neoproterozoic in North China. The chronostratigraphic position is the key in this study. However, many key horizons have not been calibrated with the high-quafity isotopic ages. Using the reported new U-Pb age with the Sensitive High-Resolution Ion Microprobe (SHRIMP Ⅱ), a zircon U- Pb age was obtained of the ash bed in the Xiamaling Formation in North China Plate, yielding a weighted mean ^206pb/^238U age of 1368±12 Ma. It is the first SHRIMP U-Pb age from the Xiamaling Formation in the North China Plate, and represents the depositing time of the middle part of the Xiamaling Formation. The zircon age plays an important role to understanding geological evolution of the North China Plate during Meso- and Neoproterozoic.展开更多
Heat carried by deep fluid might greatly affect hydrocarbon generation and pore space in shale.Dyke intrusion carrying high levels of heat may be a means by which to explore the influence of deep fluid on shale reserv...Heat carried by deep fluid might greatly affect hydrocarbon generation and pore space in shale.Dyke intrusion carrying high levels of heat may be a means by which to explore the influence of deep fluid on shale reservoirs.This study evaluates hydrocarbon generation and analyzed the evolution of shale storage space in the third member of the Xiamaling Formation in the Zhaojiashan section,Hebei Province,based on experimental data such as TOC,SEM,VRo,low-temperature N_(2)adsorption and high-pressure mercury injection.The results show that the dyke intrusion reduced the shale TOC content drastically―by up to 77%―and also induced instantaneous hydrocarbon generation over a range about 1.4 times the thickness of the intrusion.Furthermore,the dyke intrusion might transform organic pores in surrounding shales into inorganic pores.There were two shale porosity peaks:one appeared when VRo=2.0%,caused by the increase of organic pores as thermal maturity increased,the other occurred when the VRo value was between 3%and 4%,caused by the increase of inorganic mineral pores.It can be concluded that dyke intrusion can be an effective tool with which to study how deep fluid affects instantaneous hydrocarbon generation and pore space in shale.展开更多
The semi-closed pyrolysis simulation system under constant pressure was conducted to explore the characteristics and mechanisms of hydrocarbon generation from Xiamaling Formation shale in Xiahuayuan,North China.The ex...The semi-closed pyrolysis simulation system under constant pressure was conducted to explore the characteristics and mechanisms of hydrocarbon generation from Xiamaling Formation shale in Xiahuayuan,North China.The experiment results indicate the oil generated by the Xiamaling Formation shale in oil window should be classified as "aromatic-intermediate" type,whereas the decreasing of dry coefficient can be ascribed to the cracking of residual bitumen in source rock in the stage of high to post maturity.The amount of hydrocarbon gas generated from residual bitumen can be up to 1-2 m3 per ton rock in high to post mature stage by calculating hydrogen contents in the kerogen,the expelled hydrocarbon,and the residual hydrocarbon.This reveals the importance of residual bitumen as a gas source during high to post mature stage of the kerogen evolution,and also as the broad exploration prospect of these gases.This research highlights the attention should be paid to oil/gas reservoirs sourced from residual bitumen of organic-rich source rock in high mature stage,even the primary oil/gas reservoirs considered as the main exploration targets in middle-upper Proterozoic sediments of North China.展开更多
Biomineralization was a key development in a wide variety of organisms,yet its history prior to the Ediacaran remains poorly understood.In this paper,we describe~1420-1330 million year old microscopic tubes preserved ...Biomineralization was a key development in a wide variety of organisms,yet its history prior to the Ediacaran remains poorly understood.In this paper,we describe~1420-1330 million year old microscopic tubes preserved as siderite(FeCO_(3)).In size and shape these tubes closely resemble cyanobacterial sheaths forming mineralized mats.We consider two competing explanations for their formation.First,the tubes and associated sediment were originally composed of Ca-carbonate that was subsequently replaced by siderite.In this case,siderite mineralization was early,but post-mortem,as in early silicification,and preferentially preserved the more resilient sheath.However,no relict calcite is observed.Second,the Fe-carbonate mineralogy of the tubes and sediment is synsedimentary.In this case,photosynthetic oxygen may have precipitated Fe-oxyhydroxide that was promptly converted to siderite by dissimilatory iron reduction(DIR).Primary siderite mineralization of cyanobacteria has not been described before.Both explanations link photosynthetic processes to preferential sheath mineralization during the life of the cyanobacteria,as observed in present-day calcified cyanobacteria.This process might include CO_(2)-concentrating mechanisms(CCMs)linked to relatively low levels of atmospheric CO_(2),consistent with empirical estimates of mid-Proterozoic CO_(2)levels based on paleosols and weathering rinds.In either case,these cyanobacterium-like fossils preserved in siderite provide an early example of biomineralization and suggest the interactive in-fluences of both metabolic processes and ambient seawater chemistry.展开更多
The accumulation of oxygen is one of the most important characteristics that distinguish Earth from other planets in the solar system,which is also considered to be the key factor influencing the birth and evolution o...The accumulation of oxygen is one of the most important characteristics that distinguish Earth from other planets in the solar system,which is also considered to be the key factor influencing the birth and evolution of complex life forms.The oxygenation process of the Earth surface has long been viewed to be episodic with two critical intervals occurring in the early Paleoproterozoic(2.45-2.10 Ga)and the late Neoproterozoic(0.80-0.54 Ga),with a 1.3-billion-year-long low oxygen period in between.Recently,increasing independent works carried out by different scientific teams in the Yanliao Basin,North China are demonstrating that the atmospheric oxygen concentrations had reached>4%PAL(present atmospheric levels)at least during 1.59-1.56,1.44-1.43,and 1.40-1.36 Ga.These estimated values are higher than the previously recommended values of<0.1-1%PAL.Such a scenario discovered in the Yanliao Basin is consistent with the synchronously deposited strata in Australia and Siberia,pointing to a Mesoproterozoic oxygenation event(1.59-1.36 Ga)between the two major oxygenation intervals during the Proterozoic.This Mesoproterozoic oxygenation event is coupled with the break-up of the Columbia(Nuna)supercontinent,the formation of organic-rich shales and Fe-Mn deposits,and the early innovation of eukaryotic algae,indicating that the geological and biological co-evolutionary processes control the Earth surface system.展开更多
The rate of net primary production in the Proterozoic ocean was suggested to be no more than 10% of its modern value(Laakso and Schrag,2019),however,in the Mesoproterozoic Xiamaling Formation,the export production val...The rate of net primary production in the Proterozoic ocean was suggested to be no more than 10% of its modern value(Laakso and Schrag,2019),however,in the Mesoproterozoic Xiamaling Formation,the export production values could reach 20%-150% of the present-day Equatorial Atlantic average values(Zhang et al.,2016).Here,we report Zn and Cu isotope data for black shales from the Xiamaling Formation to illustrate the biogeochemical cycling of Zn and Cu in the Mesoproterozoic ocean.The ^(65)Cu-enriched signature in the authigenic fraction is similar to that in bioauthigenic Cu of the modern marine sediments.The Zn isotope ratios of sediments deposited in euxinic conditions are commonly higher than those of clastic sediments,indicating light Zn sinks in the coeval ocean.Combined with previously reported Mo isotope data,the proportion of organic carbon to total carbon burial in the Mesoproterozoic was about as half as that at present,which is larger than the previous estimation―a quarter of today’s value(e.g.,Ozaki et al.,2019) and is evidenced by a wide distribution of black shales.The organic burial may be ascribed to the increasing phosphorus inputs from large igneous provinces and consequently high primary productivity,which has spurred the hypothesized atmosphere-ocean oxygenation at ~1.4 Ga.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40621002 and Grant No.2006FY120300-1)the Program for Changjiang Scholars and Innovative Research Team in university(Grant No.IRT0546).
文摘Setting up the hypostratotype of late Precambrian is the main aim of the research on the Meso- and Neoproterozoic in North China. The chronostratigraphic position is the key in this study. However, many key horizons have not been calibrated with the high-quafity isotopic ages. Using the reported new U-Pb age with the Sensitive High-Resolution Ion Microprobe (SHRIMP Ⅱ), a zircon U- Pb age was obtained of the ash bed in the Xiamaling Formation in North China Plate, yielding a weighted mean ^206pb/^238U age of 1368±12 Ma. It is the first SHRIMP U-Pb age from the Xiamaling Formation in the North China Plate, and represents the depositing time of the middle part of the Xiamaling Formation. The zircon age plays an important role to understanding geological evolution of the North China Plate during Meso- and Neoproterozoic.
基金funded by the National Key R&D Program(2017YFC060302)the National Natural Science Foundation of China(41872155,41872164 and 42172168)。
文摘Heat carried by deep fluid might greatly affect hydrocarbon generation and pore space in shale.Dyke intrusion carrying high levels of heat may be a means by which to explore the influence of deep fluid on shale reservoirs.This study evaluates hydrocarbon generation and analyzed the evolution of shale storage space in the third member of the Xiamaling Formation in the Zhaojiashan section,Hebei Province,based on experimental data such as TOC,SEM,VRo,low-temperature N_(2)adsorption and high-pressure mercury injection.The results show that the dyke intrusion reduced the shale TOC content drastically―by up to 77%―and also induced instantaneous hydrocarbon generation over a range about 1.4 times the thickness of the intrusion.Furthermore,the dyke intrusion might transform organic pores in surrounding shales into inorganic pores.There were two shale porosity peaks:one appeared when VRo=2.0%,caused by the increase of organic pores as thermal maturity increased,the other occurred when the VRo value was between 3%and 4%,caused by the increase of inorganic mineral pores.It can be concluded that dyke intrusion can be an effective tool with which to study how deep fluid affects instantaneous hydrocarbon generation and pore space in shale.
基金supported by National Natural Science Foundation of China(Grant Nos.40972093 and 41172112)Natural Science Foundation of Zhejiang Province(Grant No.R5080124)+1 种基金Foundation of State Key Laboratory of Enhanced Oil Recoverythe Foundation of State Key Laboratory of Petroleum Resource and Prospecting(Grant No.2009001)
文摘The semi-closed pyrolysis simulation system under constant pressure was conducted to explore the characteristics and mechanisms of hydrocarbon generation from Xiamaling Formation shale in Xiahuayuan,North China.The experiment results indicate the oil generated by the Xiamaling Formation shale in oil window should be classified as "aromatic-intermediate" type,whereas the decreasing of dry coefficient can be ascribed to the cracking of residual bitumen in source rock in the stage of high to post maturity.The amount of hydrocarbon gas generated from residual bitumen can be up to 1-2 m3 per ton rock in high to post mature stage by calculating hydrogen contents in the kerogen,the expelled hydrocarbon,and the residual hydrocarbon.This reveals the importance of residual bitumen as a gas source during high to post mature stage of the kerogen evolution,and also as the broad exploration prospect of these gases.This research highlights the attention should be paid to oil/gas reservoirs sourced from residual bitumen of organic-rich source rock in high mature stage,even the primary oil/gas reservoirs considered as the main exploration targets in middle-upper Proterozoic sediments of North China.
基金supported by the National Natural Science Foundation of China(Grant Nos.41930320,41972028)the National Key Research and Development Project of China(Grant No.2020YFA0714803)the Chinese"111"Project(Grant No.B20011)。
文摘Biomineralization was a key development in a wide variety of organisms,yet its history prior to the Ediacaran remains poorly understood.In this paper,we describe~1420-1330 million year old microscopic tubes preserved as siderite(FeCO_(3)).In size and shape these tubes closely resemble cyanobacterial sheaths forming mineralized mats.We consider two competing explanations for their formation.First,the tubes and associated sediment were originally composed of Ca-carbonate that was subsequently replaced by siderite.In this case,siderite mineralization was early,but post-mortem,as in early silicification,and preferentially preserved the more resilient sheath.However,no relict calcite is observed.Second,the Fe-carbonate mineralogy of the tubes and sediment is synsedimentary.In this case,photosynthetic oxygen may have precipitated Fe-oxyhydroxide that was promptly converted to siderite by dissimilatory iron reduction(DIR).Primary siderite mineralization of cyanobacteria has not been described before.Both explanations link photosynthetic processes to preferential sheath mineralization during the life of the cyanobacteria,as observed in present-day calcified cyanobacteria.This process might include CO_(2)-concentrating mechanisms(CCMs)linked to relatively low levels of atmospheric CO_(2),consistent with empirical estimates of mid-Proterozoic CO_(2)levels based on paleosols and weathering rinds.In either case,these cyanobacterium-like fossils preserved in siderite provide an early example of biomineralization and suggest the interactive in-fluences of both metabolic processes and ambient seawater chemistry.
基金This work was supported by the Strategic Priority Science and Technology Program of Chinese Academy of Sciences(Class A)(Grant No.XDA14010101)the National Key Research and Development Program(Grant No.2017YFC0603101)the National Natural Science Foundation of China(Grant Nos.41872125,41530317).
文摘The accumulation of oxygen is one of the most important characteristics that distinguish Earth from other planets in the solar system,which is also considered to be the key factor influencing the birth and evolution of complex life forms.The oxygenation process of the Earth surface has long been viewed to be episodic with two critical intervals occurring in the early Paleoproterozoic(2.45-2.10 Ga)and the late Neoproterozoic(0.80-0.54 Ga),with a 1.3-billion-year-long low oxygen period in between.Recently,increasing independent works carried out by different scientific teams in the Yanliao Basin,North China are demonstrating that the atmospheric oxygen concentrations had reached>4%PAL(present atmospheric levels)at least during 1.59-1.56,1.44-1.43,and 1.40-1.36 Ga.These estimated values are higher than the previously recommended values of<0.1-1%PAL.Such a scenario discovered in the Yanliao Basin is consistent with the synchronously deposited strata in Australia and Siberia,pointing to a Mesoproterozoic oxygenation event(1.59-1.36 Ga)between the two major oxygenation intervals during the Proterozoic.This Mesoproterozoic oxygenation event is coupled with the break-up of the Columbia(Nuna)supercontinent,the formation of organic-rich shales and Fe-Mn deposits,and the early innovation of eukaryotic algae,indicating that the geological and biological co-evolutionary processes control the Earth surface system.
基金supported by the National Key R&D Program of China(No.2019YFA0708400)the National Natural Science Foundation of China(No.42003013)。
文摘The rate of net primary production in the Proterozoic ocean was suggested to be no more than 10% of its modern value(Laakso and Schrag,2019),however,in the Mesoproterozoic Xiamaling Formation,the export production values could reach 20%-150% of the present-day Equatorial Atlantic average values(Zhang et al.,2016).Here,we report Zn and Cu isotope data for black shales from the Xiamaling Formation to illustrate the biogeochemical cycling of Zn and Cu in the Mesoproterozoic ocean.The ^(65)Cu-enriched signature in the authigenic fraction is similar to that in bioauthigenic Cu of the modern marine sediments.The Zn isotope ratios of sediments deposited in euxinic conditions are commonly higher than those of clastic sediments,indicating light Zn sinks in the coeval ocean.Combined with previously reported Mo isotope data,the proportion of organic carbon to total carbon burial in the Mesoproterozoic was about as half as that at present,which is larger than the previous estimation―a quarter of today’s value(e.g.,Ozaki et al.,2019) and is evidenced by a wide distribution of black shales.The organic burial may be ascribed to the increasing phosphorus inputs from large igneous provinces and consequently high primary productivity,which has spurred the hypothesized atmosphere-ocean oxygenation at ~1.4 Ga.