Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest chang...Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.展开更多
Tree species diversity and population structure at different community types were described and analyzed for primary and secondary lowland moist deciduous forests in Tripura. Overall 10,957 individual trees belonging ...Tree species diversity and population structure at different community types were described and analyzed for primary and secondary lowland moist deciduous forests in Tripura. Overall 10,957 individual trees belonging to 46 family, 103 genera and 144 species were counted at ≥30 cm DBH (diameter at breast height) using 28 permanent belt transects with a size of 1 ha (10 m × 1000 m). Four different tree communities were identified. The primary forests was dominated by Shorea robusta (mean density 464.77 trees.ha^-1, 105 species) and Schima wallichii (336.25 trees.ha^-1, 82 species), while the secondary forests was dominated by Tectona grandis (333.88 trees.ha^-1, 105 species) and Hevea brasiliensis (299.67 trees.ha^-1, 82 species). Overall mean basal area in this study was 18.01m2.ha^-1; the maximum value was recorded in primary Shorea forest (26.21 m2.ha^-1). Mean density and diversity indices were differed significantly within four different communities. No significant differences were observed in number of species, genera, family and tree basal cover area. Significant relationships were found between the species richness and different tree population groups across the communities. Results revealed that species diversity and density were increased in those forests due to past disturbances which resulted in slow accumu- lation of native oligarchic small tree species. Seventeen species were recorded with 〈2 individuals of which Saraca asoka (Roxb.) de Wilde and Entada phaseoloides (L.) Men'. etc. extensively used in local ethnomedicinal formulations. The present S. robusta Gaertn dominated forest was recorded richer (105 species) than other reported studies. Moraceae was found more speciose family instead of Papilionaceae and Euphorbiaceae than other Indian moist deciduous forests. Seasonal phenological gap in such moist deciduous forests influenced the population of Trachypithecus pileatus and capped langur. The analysis of FIV suggested a slow trend of shifting the population of Lamiaceae group by Moraceae species in secondary T. grandis L. dominated community.展开更多
Species diversity and stability of natural secondary communities in different layers with different cutting intensities 10 years later were investigated by calculating Marglef Richness index(R),Shannon-Wiener divers...Species diversity and stability of natural secondary communities in different layers with different cutting intensities 10 years later were investigated by calculating Marglef Richness index(R),Shannon-Wiener diversity index(H),Simpson diversity index(P),and Pielou Evenness index(J).Results show that the values of R,H and P among different layers are listed in a decreasing order:the shrub layer the arbor layer the herb layer,all the three indices values reach the maximum under medium selective cutting intensity after 10 years.The J value of the shrub layer shows a concave parabolic change with the increase in cutting intensity;it shows a linear increase for the arbor layer,whereas the J value of the herb layer shows an opposite change pattern.The values of R at different cutting intensities had high significant difference,but other indices had not significant difference.The stability of communities at different cutting intensities after 10 years is non-cutting low selective cutting intensity medium selective cutting intensity high selective cutting intensity extra-high intensity clear cutting.The stability of communities at different cutting intensities after 10 years shows that the greater cutting intensities,the worse the stability is.展开更多
Using the widely adopted scheme of space-for-time substitution for investigating 16 typical plots distri-buted as a pattern of contiguous grid quadrates within a sampling plot,the expressions of Shannon-Wiener index(H...Using the widely adopted scheme of space-for-time substitution for investigating 16 typical plots distri-buted as a pattern of contiguous grid quadrates within a sampling plot,the expressions of Shannon-Wiener index(H)for species diversity,Pielou index(J_(sw),J_(SI))for evenness and Simpson index(D)for ecological dominance are employed to investigate the species diversity(SD)of four evergreen broadleaved communities in the successions sequence within the Nature Reserve of the Gutian Mountains.Results showed that in the successions process from the coniferous to the mixed coniferous-broadleaved,then to Schima superba and finally to Castanopsis eyrei forest,the arbor layer SD showed the Shannon-Wiener index(H)as 1.9670,2.4975,2.6140 and 2.4356,respectively,characterized by their rise before drop and the shrub(herb)layer SD shows the maximum to be in the mixed coniferous-broadleaved(coniferous)forest(H arriving at 2.8625(1.5334)).In the vertical structure,on the other hand,for the sequenced coniferous forest,coniferous-broad mixed forest and Castnaopsis eyrei forest,the number of SD ranges in a decreasing order from the shrub,arbor to herb layer in contrast to the SD in a decreasing order of Schima superba forest ranging from the arbor to shrub and then to herb layer,and during the succession,the herb layer exhibits the maximum range of SD change among these layers,with its variation coefficients of 0.1572,0.0806,0.0899 and 0.1884 for H,J_(SW),J_(SI) and D,in order,in sharp contrast to the minimal SD range in the shrub layer,with the corresponding figures of 0.0482,0.0385,0.0142,and 0.1553.展开更多
Taking the communities of the sample sites in Aershan of Inner Mongolia as an investigation object, the indices affecting plant diversity were studied. The investigation was carried out in three different forest types...Taking the communities of the sample sites in Aershan of Inner Mongolia as an investigation object, the indices affecting plant diversity were studied. The investigation was carried out in three different forest types (natural forests, plantations and regenerated forests after fire). Results show that 95 plant species belonging to 19 families and 50 genera were identified in total. Of these species, nine were arbors, six were shrubs and the other 80 were herbs. We found some differences in the dominant species of different layers in three forest types. Natural forests had the largest importance value for the total number of species, followed by plantations and regenerated forests after fire. Plantations and natural forests had a similar change in richness indices. The largest value of richness indices was obtained in natural forests, while the lowest value was in regenerated forests after fire. Three diversity indices (Simpson's, Shannon-Wiener and Pielou's indices) indicate a similar trend in all sample plots. With an increase in elevation, values of diversity indices first increased and then decreased. In different forest types, similarity between natural forests was largest, while similarity between the regenerated forests and plantations was lowest.展开更多
Background:Insect pests are a significant threat to natural resources and social development.Modeling species assemblages of insect pests can predict spatiotemporal pest dynamics.However,research gaps remain regarding...Background:Insect pests are a significant threat to natural resources and social development.Modeling species assemblages of insect pests can predict spatiotemporal pest dynamics.However,research gaps remain regarding the mechanism for determining species assemblages of insect pests in alpine forest ecosystems.Here,we explored these determinants using a field investigation conducted for insect pests in a region of the Qinghai-Tibet Plateau.We assessed the species assemblages of insect pests in alpine forest ecosystems based on species co-occurrence patterns and species diversity(i.e.,observed diversity,dark diversity,community completeness,and species pool).A probabilistic model was used to test for statistically significant pairwise patterns of species co-occurrence using the presence-absence matrix of pest species based on species interactions.We used ordinary least squares regression modeling to explore relationships between abiotic factors(i.e.,climate factors and human influence)and species diversity.Results:Positive pest species interactions and many association links can occur widely across different investigation sites and parts of plant hosts in alpine forest ecosystems.We detected high dark diversity and low community completeness of insect pests in alpine forest ecosystems.High temperature and precipitation could promote pest species diversity,particularly dark diversity and species pools.Human influence could drive high levels of pest species diversity and lead to dark diversity and species pools.Community completeness could be an effective indicator for insect pest risk assessment.Conclusions:Our study provides new evidence for the determinants of insect pest species assemblages in alpine forest ecosystems from the perspectives of pest species interactions and abiotic factors.The findings of our study could reveal the mechanism for shaping species assemblages and support the prevention and control of insect pests in alpine forest ecosystems.展开更多
The forest plant biological diversity investigations were conducted in Laoyeling Forest Ecological Experimental Station on Mao’er Mountains in eastern Heltongjiang Province. Sample plots were six different forest com...The forest plant biological diversity investigations were conducted in Laoyeling Forest Ecological Experimental Station on Mao’er Mountains in eastern Heltongjiang Province. Sample plots were six different forest communities. Field works were divided into three seasons : spring, summer and autumn in one year. The results showed that forest plant biological diversity varied with seasons as well as growth forms. Herb species diversity values were the highest in the community growth forms. Diversity indices No, H’ and E1 were selected out as the best richness, diversity and evenness indices to indicate the biological diversity in forest community.展开更多
Background: Species turnover is typically measured by partitioning diversity components into alpha and pairwise beta diversity. However, alpha and beta components cannot express the full spectrum of multiple-site com...Background: Species turnover is typically measured by partitioning diversity components into alpha and pairwise beta diversity. However, alpha and beta components cannot express the full spectrum of multiple-site compositional turnover. To this end, zeta diversity has been proposed as an extended framework to allow complete biodiversity partitioning and to measure multiple-site species turnover. We use a zeta-diversity framework to explore the turnover and potential community assembly processes of an African Montane Forest. Methods: Using a 20 m grid, we explore the species turnover in a 4.55 ha forest plot located in the Garden Route National Park of South Africa, with 47 and 27 canopy and sub-canopy tree species in the regional poo We first calculate how zeta diversity declines and how the probability of retention of species with particular occupancies changes with increasing zeta orders (i.e. the number of sites [grid cells] involved in the calculation). Using null models with row sums and column sums constrained respectively, we explore whether species turnover is driven by mechanisms of ecological differences (species-specific occupancies) or habitat heterogeneity (site-specific alpha diversity and thus environmental filters). Results: The decline of zeta diversity with zeta order followed a power law; that is, the probability of retention increased with species occupancies, suggesting common species being more likely to be discovered in extra sites. The null model retaining row sums (species' occupancy) of the species-by-site matrix recreated perfectly the decline of zeta diversity, while the null model of habitat heterogeneity (retaining column sums) was rejected. This suggests that mechanisms driving species-specific occupancies (i.e. ecological differences between species) dictate the multi-site species turnover in the community. The spatial patterns of zeta diversity revealed little spatial structuring forces, supporting a fine-grain structure in these southern Cape forests. Conclusions: The framework of zeta diversity revealed mechanisms driving the large discrepancies in the occupancy among species that are behind the species turnover in the African Montane forest plot. Future studies could further link species turnover to spatial distance decay. Environmental filters and temporal turnover from landscape demography could bring a cohesive understanding of community assembly in these unique forest ecosystems.展开更多
10 temple courtyards and 10 temple gardens were chosen as the research object in Nanjing.There were 146 species of vascular plants(including variety),which belong to 96 genera and 63 families.The Richness index,Simpso...10 temple courtyards and 10 temple gardens were chosen as the research object in Nanjing.There were 146 species of vascular plants(including variety),which belong to 96 genera and 63 families.The Richness index,Simpson index,Species diversity and Similarity index of the plant community were analyzed.The results showed:①The dominant species of temple courtyards and temple gardens were all trees;the density of shrub layer(0.32 strains/m2) was greater than that of the tree layer(0.21 strains/m2).And the density of tree layer(2.4 strains/m2) and shrub layer(4.5 strains/m2) in temple gardens were totally higher than those of temple courtyards.②Both the Simpson index and the Species diversity in temple garden plots were higher than those of the temple courtyard plots;The Pielou index was at a higher level both in tree layer and shrub layer,which indicated that quantities of each tree species were on an average level.③The Similarity index in temple gardens was higher than that of the temple courtyards,both less than 50%,which indicated that the repetition rate of each tree species was obviously greater in temple gardens than in temple courtyards.展开更多
The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic samp...The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient.We found that plant species richness declines monotonically from low to high elevations.Specifically,vascular plant species richness and diversity were lower in the Afroalpine grassland(high elevation)than in the Dry evergreen Afromontane forest and Ericaceous forest(low elevations).In contrast,endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest.Elevation showed a significant impact on the richness,diversity,and endemism of vascular plants.According to Sorensen's coefficient,the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher(32%)than the similarity between Ericaceous forest and Afroalpine grassland(18%).Only 5%similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland.Growth forms showed different elevationai richness patterns.Trees and liana increased monotonically up to 3300 m.Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient.The elevation patterns of vascular plant species richness,diversity,and growth form in the present study may be attributed to differences in management intensity,spatial heterogeneity,microclimatic variations,and anthropogenic disturbances.展开更多
Plant community structures of Baise Forest Park were analyzed through the field investigation. The results showed that there are 76 tree species of 69 genera and 41 families in the park. According to the species diver...Plant community structures of Baise Forest Park were analyzed through the field investigation. The results showed that there are 76 tree species of 69 genera and 41 families in the park. According to the species diversity analysis, among the 5 subareas recreational area has the highest diversity and evenness indexes, zoo has lower diversity index of plant community. Three-dimensional analysis of plant community shows that the community has simple structures, limited landscape layers and shrub coverage, a few lawn species and poor landscape effect. Analysis of its ecological habits shows that evergreen species in all 5 subareas of the park are more than deciduous species, and there are only a few ornamental tree species.展开更多
基金funded by the Guangxi Natural Science Foundation Program (2022GXNSFAA035583 and 2020GXNSFAA159108)National Natural Science Foundation of China (32060305)+2 种基金Foundation of Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of Education, China (ERESEP 2021Z06)Chinese Forest Biodiversity Monitoring Network
文摘Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.
基金supported by DBT Network Project (BT/PR7928/NDB/52/9/2006)Department of Biotechnology(DBT),Govt. of India
文摘Tree species diversity and population structure at different community types were described and analyzed for primary and secondary lowland moist deciduous forests in Tripura. Overall 10,957 individual trees belonging to 46 family, 103 genera and 144 species were counted at ≥30 cm DBH (diameter at breast height) using 28 permanent belt transects with a size of 1 ha (10 m × 1000 m). Four different tree communities were identified. The primary forests was dominated by Shorea robusta (mean density 464.77 trees.ha^-1, 105 species) and Schima wallichii (336.25 trees.ha^-1, 82 species), while the secondary forests was dominated by Tectona grandis (333.88 trees.ha^-1, 105 species) and Hevea brasiliensis (299.67 trees.ha^-1, 82 species). Overall mean basal area in this study was 18.01m2.ha^-1; the maximum value was recorded in primary Shorea forest (26.21 m2.ha^-1). Mean density and diversity indices were differed significantly within four different communities. No significant differences were observed in number of species, genera, family and tree basal cover area. Significant relationships were found between the species richness and different tree population groups across the communities. Results revealed that species diversity and density were increased in those forests due to past disturbances which resulted in slow accumu- lation of native oligarchic small tree species. Seventeen species were recorded with 〈2 individuals of which Saraca asoka (Roxb.) de Wilde and Entada phaseoloides (L.) Men'. etc. extensively used in local ethnomedicinal formulations. The present S. robusta Gaertn dominated forest was recorded richer (105 species) than other reported studies. Moraceae was found more speciose family instead of Papilionaceae and Euphorbiaceae than other Indian moist deciduous forests. Seasonal phenological gap in such moist deciduous forests influenced the population of Trachypithecus pileatus and capped langur. The analysis of FIV suggested a slow trend of shifting the population of Lamiaceae group by Moraceae species in secondary T. grandis L. dominated community.
基金supported by National Natural Science Foundation of China (30972359, 31070567)the Natural Science Foundation of Fujian Province (No.2006J0301, No.2008J0327,No.2009J0101)+1 种基金the Science Foundation of Science Technology of Fu-jian Province (No.2007N0002, No.2006F5006, No.2007F5010)the Science Foundation of Forestry Committee of Fujian Province (Forestry Science of Fujian[2006] No.7,No.14)
文摘Species diversity and stability of natural secondary communities in different layers with different cutting intensities 10 years later were investigated by calculating Marglef Richness index(R),Shannon-Wiener diversity index(H),Simpson diversity index(P),and Pielou Evenness index(J).Results show that the values of R,H and P among different layers are listed in a decreasing order:the shrub layer the arbor layer the herb layer,all the three indices values reach the maximum under medium selective cutting intensity after 10 years.The J value of the shrub layer shows a concave parabolic change with the increase in cutting intensity;it shows a linear increase for the arbor layer,whereas the J value of the herb layer shows an opposite change pattern.The values of R at different cutting intensities had high significant difference,but other indices had not significant difference.The stability of communities at different cutting intensities after 10 years is non-cutting low selective cutting intensity medium selective cutting intensity high selective cutting intensity extra-high intensity clear cutting.The stability of communities at different cutting intensities after 10 years shows that the greater cutting intensities,the worse the stability is.
基金This work was supported by the Natural Sciences Foundation of China(No.30200034)Natural Science Foundation of Zhejiang Province(No.301026).
文摘Using the widely adopted scheme of space-for-time substitution for investigating 16 typical plots distri-buted as a pattern of contiguous grid quadrates within a sampling plot,the expressions of Shannon-Wiener index(H)for species diversity,Pielou index(J_(sw),J_(SI))for evenness and Simpson index(D)for ecological dominance are employed to investigate the species diversity(SD)of four evergreen broadleaved communities in the successions sequence within the Nature Reserve of the Gutian Mountains.Results showed that in the successions process from the coniferous to the mixed coniferous-broadleaved,then to Schima superba and finally to Castanopsis eyrei forest,the arbor layer SD showed the Shannon-Wiener index(H)as 1.9670,2.4975,2.6140 and 2.4356,respectively,characterized by their rise before drop and the shrub(herb)layer SD shows the maximum to be in the mixed coniferous-broadleaved(coniferous)forest(H arriving at 2.8625(1.5334)).In the vertical structure,on the other hand,for the sequenced coniferous forest,coniferous-broad mixed forest and Castnaopsis eyrei forest,the number of SD ranges in a decreasing order from the shrub,arbor to herb layer in contrast to the SD in a decreasing order of Schima superba forest ranging from the arbor to shrub and then to herb layer,and during the succession,the herb layer exhibits the maximum range of SD change among these layers,with its variation coefficients of 0.1572,0.0806,0.0899 and 0.1884 for H,J_(SW),J_(SI) and D,in order,in sharp contrast to the minimal SD range in the shrub layer,with the corresponding figures of 0.0482,0.0385,0.0142,and 0.1553.
基金supported by Biodiversity and Forest Pest Problems in northeast China (BIOPROC)a cooperative project between Beijing Forestry University and Helsinki Universitythe Program for Changjiang Scholars and Innovative Research Team in Universities (PCSIRT0607)
文摘Taking the communities of the sample sites in Aershan of Inner Mongolia as an investigation object, the indices affecting plant diversity were studied. The investigation was carried out in three different forest types (natural forests, plantations and regenerated forests after fire). Results show that 95 plant species belonging to 19 families and 50 genera were identified in total. Of these species, nine were arbors, six were shrubs and the other 80 were herbs. We found some differences in the dominant species of different layers in three forest types. Natural forests had the largest importance value for the total number of species, followed by plantations and regenerated forests after fire. Plantations and natural forests had a similar change in richness indices. The largest value of richness indices was obtained in natural forests, while the lowest value was in regenerated forests after fire. Three diversity indices (Simpson's, Shannon-Wiener and Pielou's indices) indicate a similar trend in all sample plots. With an increase in elevation, values of diversity indices first increased and then decreased. In different forest types, similarity between natural forests was largest, while similarity between the regenerated forests and plantations was lowest.
基金supported by the National Natural Science Foundation of China(Nos.31800449 and 31800464)the project of the third forestry pest survey of Qinghai Province,China.
文摘Background:Insect pests are a significant threat to natural resources and social development.Modeling species assemblages of insect pests can predict spatiotemporal pest dynamics.However,research gaps remain regarding the mechanism for determining species assemblages of insect pests in alpine forest ecosystems.Here,we explored these determinants using a field investigation conducted for insect pests in a region of the Qinghai-Tibet Plateau.We assessed the species assemblages of insect pests in alpine forest ecosystems based on species co-occurrence patterns and species diversity(i.e.,observed diversity,dark diversity,community completeness,and species pool).A probabilistic model was used to test for statistically significant pairwise patterns of species co-occurrence using the presence-absence matrix of pest species based on species interactions.We used ordinary least squares regression modeling to explore relationships between abiotic factors(i.e.,climate factors and human influence)and species diversity.Results:Positive pest species interactions and many association links can occur widely across different investigation sites and parts of plant hosts in alpine forest ecosystems.We detected high dark diversity and low community completeness of insect pests in alpine forest ecosystems.High temperature and precipitation could promote pest species diversity,particularly dark diversity and species pools.Human influence could drive high levels of pest species diversity and lead to dark diversity and species pools.Community completeness could be an effective indicator for insect pest risk assessment.Conclusions:Our study provides new evidence for the determinants of insect pest species assemblages in alpine forest ecosystems from the perspectives of pest species interactions and abiotic factors.The findings of our study could reveal the mechanism for shaping species assemblages and support the prevention and control of insect pests in alpine forest ecosystems.
文摘The forest plant biological diversity investigations were conducted in Laoyeling Forest Ecological Experimental Station on Mao’er Mountains in eastern Heltongjiang Province. Sample plots were six different forest communities. Field works were divided into three seasons : spring, summer and autumn in one year. The results showed that forest plant biological diversity varied with seasons as well as growth forms. Herb species diversity values were the highest in the community growth forms. Diversity indices No, H’ and E1 were selected out as the best richness, diversity and evenness indices to indicate the biological diversity in forest community.
基金National Research Foundation of South Africa(grants 89967 and 109244)
文摘Background: Species turnover is typically measured by partitioning diversity components into alpha and pairwise beta diversity. However, alpha and beta components cannot express the full spectrum of multiple-site compositional turnover. To this end, zeta diversity has been proposed as an extended framework to allow complete biodiversity partitioning and to measure multiple-site species turnover. We use a zeta-diversity framework to explore the turnover and potential community assembly processes of an African Montane Forest. Methods: Using a 20 m grid, we explore the species turnover in a 4.55 ha forest plot located in the Garden Route National Park of South Africa, with 47 and 27 canopy and sub-canopy tree species in the regional poo We first calculate how zeta diversity declines and how the probability of retention of species with particular occupancies changes with increasing zeta orders (i.e. the number of sites [grid cells] involved in the calculation). Using null models with row sums and column sums constrained respectively, we explore whether species turnover is driven by mechanisms of ecological differences (species-specific occupancies) or habitat heterogeneity (site-specific alpha diversity and thus environmental filters). Results: The decline of zeta diversity with zeta order followed a power law; that is, the probability of retention increased with species occupancies, suggesting common species being more likely to be discovered in extra sites. The null model retaining row sums (species' occupancy) of the species-by-site matrix recreated perfectly the decline of zeta diversity, while the null model of habitat heterogeneity (retaining column sums) was rejected. This suggests that mechanisms driving species-specific occupancies (i.e. ecological differences between species) dictate the multi-site species turnover in the community. The spatial patterns of zeta diversity revealed little spatial structuring forces, supporting a fine-grain structure in these southern Cape forests. Conclusions: The framework of zeta diversity revealed mechanisms driving the large discrepancies in the occupancy among species that are behind the species turnover in the African Montane forest plot. Future studies could further link species turnover to spatial distance decay. Environmental filters and temporal turnover from landscape demography could bring a cohesive understanding of community assembly in these unique forest ecosystems.
文摘10 temple courtyards and 10 temple gardens were chosen as the research object in Nanjing.There were 146 species of vascular plants(including variety),which belong to 96 genera and 63 families.The Richness index,Simpson index,Species diversity and Similarity index of the plant community were analyzed.The results showed:①The dominant species of temple courtyards and temple gardens were all trees;the density of shrub layer(0.32 strains/m2) was greater than that of the tree layer(0.21 strains/m2).And the density of tree layer(2.4 strains/m2) and shrub layer(4.5 strains/m2) in temple gardens were totally higher than those of temple courtyards.②Both the Simpson index and the Species diversity in temple garden plots were higher than those of the temple courtyard plots;The Pielou index was at a higher level both in tree layer and shrub layer,which indicated that quantities of each tree species were on an average level.③The Similarity index in temple gardens was higher than that of the temple courtyards,both less than 50%,which indicated that the repetition rate of each tree species was obviously greater in temple gardens than in temple courtyards.
基金Addis Ababa University office of vice president for research and Technology transfer for funding the thematic research, “Integrated approaches of Molecular Systematics and plant Biodiversity Informatics to Climate Change Mitigation and Monitoring in Ethiopian Mountains”
文摘The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient.We found that plant species richness declines monotonically from low to high elevations.Specifically,vascular plant species richness and diversity were lower in the Afroalpine grassland(high elevation)than in the Dry evergreen Afromontane forest and Ericaceous forest(low elevations).In contrast,endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest.Elevation showed a significant impact on the richness,diversity,and endemism of vascular plants.According to Sorensen's coefficient,the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher(32%)than the similarity between Ericaceous forest and Afroalpine grassland(18%).Only 5%similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland.Growth forms showed different elevationai richness patterns.Trees and liana increased monotonically up to 3300 m.Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient.The elevation patterns of vascular plant species richness,diversity,and growth form in the present study may be attributed to differences in management intensity,spatial heterogeneity,microclimatic variations,and anthropogenic disturbances.
基金Supported by Scientific Research Program of Guangxi Provincial Department of Education(201103YB128, 201010lx500)Key scientific research project of Baise University(2012KA02)+1 种基金Integrated construction program of characteristic biotechnology majors and courses(GXTSZY224)2011 Young teachers growth foundation of Baise University
文摘Plant community structures of Baise Forest Park were analyzed through the field investigation. The results showed that there are 76 tree species of 69 genera and 41 families in the park. According to the species diversity analysis, among the 5 subareas recreational area has the highest diversity and evenness indexes, zoo has lower diversity index of plant community. Three-dimensional analysis of plant community shows that the community has simple structures, limited landscape layers and shrub coverage, a few lawn species and poor landscape effect. Analysis of its ecological habits shows that evergreen species in all 5 subareas of the park are more than deciduous species, and there are only a few ornamental tree species.