Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 19...Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products.展开更多
The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended inter...The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended intervals and time delays in time series data.Additionally,the sequence-to-sequence(Seq2Seq)model,known for handling temporal relationships,adapting to variable-length sequences,effectively capturing historical information,and accommodating various influencing factors,emerges as a robust and flexible tool in discharge forecasting.In this study,we introduce the application of LSTM-based Seq2Seq models for the first time in forecasting the discharge of a tidal reach of the Changjiang River(Yangtze River)Estuary.This study focuses on discharge forecasting using three key input characteristics:flow velocity,water level,and discharge,which means the structure of multiple input and single output is adopted.The experiment used the discharge data of the whole year of 2020,of which the first 80%is used as the training set,and the last 20%is used as the test set.This means that the data covers different tidal cycles,which helps to test the forecasting effect of different models in different tidal cycles and different runoff.The experimental results indicate that the proposed models demonstrate advantages in long-term,mid-term,and short-term discharge forecasting.The Seq2Seq models improved by 6%-60%and 5%-20%of the relative standard deviation compared to the harmonic analysis models and improved back propagation neural network models in discharge prediction,respectively.In addition,the relative accuracy of the Seq2Seq model is 1%to 3%higher than that of the LSTM model.Analytical assessment of the prediction errors shows that the Seq2Seq models are insensitive to the forecast lead time and they can capture characteristic values such as maximum flood tide flow and maximum ebb tide flow in the tidal cycle well.This indicates the significance of the Seq2Seq models.展开更多
Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and c...Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.展开更多
Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by la...Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).展开更多
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role...Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.展开更多
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquat...An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquatic system and its potential ecological impacts.Nitrobenzene concentrations in flowing water,sediment,and biota were predicted.Based on the initial concentrations of nitrobenzene observed in the field during the accidental discharge,that is,0.167-1.47 mg/L at different river segments, the predic...展开更多
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to m...The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.展开更多
With the impoundment of the Three Gorges Reservoir, algal blooms have been found in some tributaries. In this study, according to the theoretical analysis of the eutrophication mechanism in a river-type reservoir trib...With the impoundment of the Three Gorges Reservoir, algal blooms have been found in some tributaries. In this study, according to the theoretical analysis of the eutrophication mechanism in a river-type reservoir tributary, a one-dimensional eutrophication model was developed for the Xiangxi River tributary of the Three Gorges Reservoir, and the influence of hydrodynamic conditions on the primary growth rate of algae was investigated. Furthermore, numerical predictions of hydraulic variables and eutrophication factors, such as the concentration distribution of TP, TN, and Chl-a in the spatial and temporal domains, were carried out. Comparison of computation results of TP, TN, and Chl-a concentrations along the river in the spring of 2005 with experimental data demonstrates the validity of the model. The agreement between the computation results and the experimental data of TP and TN concentrations is better than the agreement between those of Chl-a concentration. The simulated results also show that the Chl-a concentration downstream is much higher than that in the upstream tributary, which potentially indicates the outbreak of algae in this area. Therefore, this study provides a feasible method of accurately predicting the state of eutrophication in river-type reservoirs and their tributaries.展开更多
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Nort...In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.展开更多
In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hyd...In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin.展开更多
Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conserva...Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conservation is still a troublesome issue.In this study, the MaxEnt model and irreplaceability index were applied to guide marsh conservation in the Nenjiang River Basin, Northeast China.According to the high accuracy of the MaxEnt model predictions(i.e., the average AUC value = 0.933), the Wuyuer River and Zhalong marshes in the downstream reaches of Wuyuer River are the optimal habitat for the Red-crowned crane and migratory waterfowls.There are 22 marsh patches selected by the patch irreplaceability index for conservation, of which 12 patches had been included in the current network of protected areas.The other 10 patches of marsh(amounting to 1096 km^2) far from human disturbances with high NDVI(up to 0.8) and close distance to water(less than 100 m), which are excluded from the existing network of PAs, should be implemented conservation easement programs to improve the protection efficiency of conservation.Specifically, the marshes at Taha, Tangchi, and Lamadian should be given priority for conservation and restoration to reintroduce migratory waterfowls, as this would lessen the current isolation state of the Zhalong National Nature Reserve.展开更多
The quantitative research of wetland landscape fragmentation in the middle reaches of the Heihe River is important for the wetland and oasis sustainable development in the Hexi Corridor. Based on the data of remote se...The quantitative research of wetland landscape fragmentation in the middle reaches of the Heihe River is important for the wetland and oasis sustainable development in the Hexi Corridor. Based on the data of remote sensing and GIS, we constructed the type change tracker model with sliding window technique and spatially mor- phological rule. The suitable scale and optimum scale of the fragmentation model of wetland landscape in the middle reaches of the Heihe River were determined by the area frequency statistics method, Chi-square distribution normal- ized scale variance, fractal dimension and diversity index. By integrating type change tracker model and the optimum scale with GIS spatial analysis, the spatial distribution characteristics of wetland landscape fragmentation in different periods and the related spatial-temporal change process were clarified. The results showed that (1) the type change tracker model, which analyzes the spatial pattern of wetland fragmentation on the pixel level, is better than the tradi- tional wetland fragmentation analysis on the landscape and patch levels; (2) The suitable scale for the wetland frag- mentation ranged from 150 rex150 m to 450 mx450 m and the optimum scale was 250 mx250 m in the middle reaches of the Heihe River; and (3) In the past 35 years, the total wetland area decreased by 23.2% and the frag- mentatJon of wetland markedly increased in the middle reaches of the Heihe River. The areas of core wetlands re- duced by 12.8% and the areas of perforated, edge and patch wetlands increased by 0.8%, 3.1% and 8.9%, respec- tively. The process of wetland fragmentation in the research region showed the order of core wetland, perforated or edge wetland, patch wetland or non-wetland. The results of this study would provide a reference for the protection, utilization and restoration of limited wetland resources and for the sustainable development of the regional eco-environment in the Heihe River Basin.展开更多
A three-dimensional wave-current-sediment coupled numerical model is developed to understand the sediment transport dynamics in the Zhujiang(Pearl)River Estuary(ZRE),China.The model results are in good agreement with ...A three-dimensional wave-current-sediment coupled numerical model is developed to understand the sediment transport dynamics in the Zhujiang(Pearl)River Estuary(ZRE),China.The model results are in good agreement with observed data,and statistics show good model skill scores.Numerical studies are conducted to assess the scenarios of suspended sediment in the ZRE under the effects of different forcing(river discharges,waves,and winds).The model results indicate that the estuarine gravitational circulation plays an important role in the development of estuarine turbidity maximum in the ZRE,particularly during neap tides.The increased river discharge can result in a seaward sediment transport.The suspended sediment concentration(SSC)in the bottom increases with both wave bottom orbital velocity and wave height.Because of the shallow water depth,the effect of waves on sediment in the west shoal is greater than that in the east channel.The southwesterly wind-induced wave affects the SSC more than those resulting from the northeasterly wind,while the northeasterly wind-driven circulation has a slightly greater influence on the SSC than that of the southwesterly wind.However,a steady southwesterly wind condition favors the increase of the SSC in the Lingding Bay more so than a steady northeasterly wind condition.If the other forcings are same,the averaged SSC under a steady southwesterly wind condition is about 1.1 times that resulting from a steady northeasterly wind.展开更多
Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') pr...Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources.展开更多
A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pol...A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE ? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water qual展开更多
With the development of industry and agriculture,nitrogen,phosphorus and other nutrients in the Hanshui River greatly increase and eutrophication has become an important threat to the water quality of the Hanshui Rive...With the development of industry and agriculture,nitrogen,phosphorus and other nutrients in the Hanshui River greatly increase and eutrophication has become an important threat to the water quality of the Hanshui River,especially in the middle and lower reaches.The primary objective of this study was to establish the water quality model for the middle and lower reaches of the Hanshui River based on the model of MIKE 11.The main pollutants migration and transformation process could be simulated using the water quality model.The rainfall-runoff model,hy-drodynamic model and water quality model were established using MIKE 11.The pollutants,such as chemical oxygen demand(COD),biochemical oxygen demand(BOD),ammonia nitrogen,nitrate nitrogen,phosphorus,dissolved oxy-gen(DO),were simulated and predicted using the above three models.A set of methods computing non-point source pollution load of the Hanshui River Basin was proposed in this study.The simulated and observed values of COD,BOD5,ammonia,nitrate,DO,and total phosphorus were compared after the parameter calibration of the water quality model.The simulated and observed results match better,thus the model can be used to predict water quality in the fu-ture for the Hanshui River.The pollution trend could be predicted using the water quality model according pollution load generation.It is helpful for government to take effective measures to prevent the water bloom and protect water quality in the river.展开更多
Hydraulic models for the generation of flood inundation maps are not commonly applied in mountain river basins because of the difficulty in modeling the hydraulic behavior and the complex topography. This paper presen...Hydraulic models for the generation of flood inundation maps are not commonly applied in mountain river basins because of the difficulty in modeling the hydraulic behavior and the complex topography. This paper presents a comparative analysis of the performance of four twodimensional hydraulic models (HEC-RAS 2D, Iber 2D, Flood Modeller 2D, and PCSWMM 2D) with respect to the generation of flood inundation maps. The study area covers a 5-km reach of the Santa B-arbara River located in the Ecuadorian Andes, at 2330 masl, in Gualaceo. The model's performance was evaluated based on the water surface elevation and flood extent, in terms of the mean absolute difference and measure of fit. The analysis revealed that, for a given case, Iber 2D has the best performance in simulating the water level and inundation for flood events with 20- and 50-year return periods, respectively, followed by Flood Modeller 2D, HEC-RAS 2D, and PCSWMM 2D in terms of their performance. Grid resolution, the way in which hydraulic structures are mimicked, the model code, and the default value of the parameters are considered the main sources of prediction uncertainty.展开更多
This paper firstly investigated the land-use and land-cover change (LUCC) in the Hun-Taizi River water- shed, Northeast China from 1988 to 2004 based on remotely sensed images and geographic information systems (GI...This paper firstly investigated the land-use and land-cover change (LUCC) in the Hun-Taizi River water- shed, Northeast China from 1988 to 2004 based on remotely sensed images and geographic information systems (GIS) technology. Then, using the famous land-use change model of Conversion of Land Use and its Effects at Small re- gional extent (CLUE-S), this paper simulated the land use changes under historical trend (HT), urban planning (UP) and ecological protection (EP) scenarios considering urban planning and ecological protection over the next 20 years. The simulated results under UP scenario in 2020 were compared with the planning map to assess the feasibility of us- ing land-use change model to guide regional planning. Results show that forest land, dry farmland, paddy, and shrub land were the main land-use categories. Paddy and dry farmland being converted to urban area and rural settlement characterized the land-use change from 1988 to 2004. The main land-use categories changed over time. Landscape-pattem fragmentation will be worse under HT and UP scenarios, but better in EP scenario. The comparing results of simulated map with planning map in 2020 show that land-use change model is powerful tool to guide regional planning. Land-use scenarios can support regional planning and policy-making through analyzing future consequences scientifically.展开更多
Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data...Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well.展开更多
文摘Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products.
基金The National Natural Science Foundation of China under contract Nos 42266006 and 41806114the Jiangxi Provincial Natural Science Foundation under contract Nos 20232BAB204089 and 20202ACBL214019.
文摘The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended intervals and time delays in time series data.Additionally,the sequence-to-sequence(Seq2Seq)model,known for handling temporal relationships,adapting to variable-length sequences,effectively capturing historical information,and accommodating various influencing factors,emerges as a robust and flexible tool in discharge forecasting.In this study,we introduce the application of LSTM-based Seq2Seq models for the first time in forecasting the discharge of a tidal reach of the Changjiang River(Yangtze River)Estuary.This study focuses on discharge forecasting using three key input characteristics:flow velocity,water level,and discharge,which means the structure of multiple input and single output is adopted.The experiment used the discharge data of the whole year of 2020,of which the first 80%is used as the training set,and the last 20%is used as the test set.This means that the data covers different tidal cycles,which helps to test the forecasting effect of different models in different tidal cycles and different runoff.The experimental results indicate that the proposed models demonstrate advantages in long-term,mid-term,and short-term discharge forecasting.The Seq2Seq models improved by 6%-60%and 5%-20%of the relative standard deviation compared to the harmonic analysis models and improved back propagation neural network models in discharge prediction,respectively.In addition,the relative accuracy of the Seq2Seq model is 1%to 3%higher than that of the LSTM model.Analytical assessment of the prediction errors shows that the Seq2Seq models are insensitive to the forecast lead time and they can capture characteristic values such as maximum flood tide flow and maximum ebb tide flow in the tidal cycle well.This indicates the significance of the Seq2Seq models.
基金supported by an internal grant of the University of Ostrava[SGS10/PřF/2021-Specificity of fluvial landscape in the context of historical and future changes].
文摘Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels.
基金supported by the National Natural Science Foundation of China(42171129)the second Tibetan Plateau Scientific Expedition and Research(2019QZKK0208)Yunnan University Talent Introduction Research Project(YJRC3201702)。
文摘Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).
基金Under the auspices of the Yunnan Scientist Workstation on International River Research of Daming He(No.KXJGZS-2019-005)National Natural Science Foundation of China(No.42201040)+1 种基金National Key Research and Development Project of China(No.2016YFA0601601)China Postdoctoral Science Foundation(No.2023M733006)。
文摘Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
文摘An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquatic system and its potential ecological impacts.Nitrobenzene concentrations in flowing water,sediment,and biota were predicted.Based on the initial concentrations of nitrobenzene observed in the field during the accidental discharge,that is,0.167-1.47 mg/L at different river segments, the predic...
基金supported by the National Basic Research Program of China (2010CB951004)a project of Xinjiang Key Lab of Water Cycle and Utilization in Arid Zone,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences (XJYS0907-2009-02)
文摘The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.
基金supported by the National Natural Science Foundation of China (Grant No. 50779028)the National Science and Technology Supporting Plan (Grant No. 2008BAB29B09)
文摘With the impoundment of the Three Gorges Reservoir, algal blooms have been found in some tributaries. In this study, according to the theoretical analysis of the eutrophication mechanism in a river-type reservoir tributary, a one-dimensional eutrophication model was developed for the Xiangxi River tributary of the Three Gorges Reservoir, and the influence of hydrodynamic conditions on the primary growth rate of algae was investigated. Furthermore, numerical predictions of hydraulic variables and eutrophication factors, such as the concentration distribution of TP, TN, and Chl-a in the spatial and temporal domains, were carried out. Comparison of computation results of TP, TN, and Chl-a concentrations along the river in the spring of 2005 with experimental data demonstrates the validity of the model. The agreement between the computation results and the experimental data of TP and TN concentrations is better than the agreement between those of Chl-a concentration. The simulated results also show that the Chl-a concentration downstream is much higher than that in the upstream tributary, which potentially indicates the outbreak of algae in this area. Therefore, this study provides a feasible method of accurately predicting the state of eutrophication in river-type reservoirs and their tributaries.
基金Chinese Academy of Sciences No.KZCX3-SW-329 No.KZCX1-10-03-01+1 种基金 No.CACX210036 No.CACX210016
文摘In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.
文摘In the Huanghe (Yellow) River basin,soil erosion is a serious problem,while runoff and sediment yield simulation has not been extensively studied on the basis of GIS (Geographic Information System) and distributed hydrological model. GIS-based SWAT (Soil and Water Assessment Tool) model was used to simulate runoff and sediment in the Huanghe River basin. The objective of this paper is to examine the applicability of SWAT model in a large river basin with high sediment runoff modulus,which could reach 770t/(km2·a). A two-stage "Brute Force" optimization procedure was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997,and with input parameters set during the calibration process without any change the model was validated with 1998-1999’s observed data. Coefficient of examination (R2) and Nash-Suttcliffe simulation efficiency (Ens) were used to evaluate model prediction. The evaluation coefficients for simulated flow and sediment,and observed flow and sediment were all above 0.7,which shows that SWAT model could be a useful tool for water resources and soil conservation planning in the Huanghe River basin.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFA0600401)the Key Research Program of Frontier Sciences from Chinese Academy of Sciences+1 种基金Fundamental Research Funds in Heilongjiang Provincial Universities(No.135209252,135309359)the Philosophy and Social Sciences Research Plan of Heilongjiang Province(No.16JLC01)
文摘Incorporating private and working lands into protected area networks could mitigate the isolation state of protected areas(PAs) and improve the efficiency of conservation.But how to select patches of land for conservation is still a troublesome issue.In this study, the MaxEnt model and irreplaceability index were applied to guide marsh conservation in the Nenjiang River Basin, Northeast China.According to the high accuracy of the MaxEnt model predictions(i.e., the average AUC value = 0.933), the Wuyuer River and Zhalong marshes in the downstream reaches of Wuyuer River are the optimal habitat for the Red-crowned crane and migratory waterfowls.There are 22 marsh patches selected by the patch irreplaceability index for conservation, of which 12 patches had been included in the current network of protected areas.The other 10 patches of marsh(amounting to 1096 km^2) far from human disturbances with high NDVI(up to 0.8) and close distance to water(less than 100 m), which are excluded from the existing network of PAs, should be implemented conservation easement programs to improve the protection efficiency of conservation.Specifically, the marshes at Taha, Tangchi, and Lamadian should be given priority for conservation and restoration to reintroduce migratory waterfowls, as this would lessen the current isolation state of the Zhalong National Nature Reserve.
基金supported by the National Natural Science Foundation of China (41261047, 41201196, 41271133)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University (NWNU-LKQN-11-11)
文摘The quantitative research of wetland landscape fragmentation in the middle reaches of the Heihe River is important for the wetland and oasis sustainable development in the Hexi Corridor. Based on the data of remote sensing and GIS, we constructed the type change tracker model with sliding window technique and spatially mor- phological rule. The suitable scale and optimum scale of the fragmentation model of wetland landscape in the middle reaches of the Heihe River were determined by the area frequency statistics method, Chi-square distribution normal- ized scale variance, fractal dimension and diversity index. By integrating type change tracker model and the optimum scale with GIS spatial analysis, the spatial distribution characteristics of wetland landscape fragmentation in different periods and the related spatial-temporal change process were clarified. The results showed that (1) the type change tracker model, which analyzes the spatial pattern of wetland fragmentation on the pixel level, is better than the tradi- tional wetland fragmentation analysis on the landscape and patch levels; (2) The suitable scale for the wetland frag- mentation ranged from 150 rex150 m to 450 mx450 m and the optimum scale was 250 mx250 m in the middle reaches of the Heihe River; and (3) In the past 35 years, the total wetland area decreased by 23.2% and the frag- mentatJon of wetland markedly increased in the middle reaches of the Heihe River. The areas of core wetlands re- duced by 12.8% and the areas of perforated, edge and patch wetlands increased by 0.8%, 3.1% and 8.9%, respec- tively. The process of wetland fragmentation in the research region showed the order of core wetland, perforated or edge wetland, patch wetland or non-wetland. The results of this study would provide a reference for the protection, utilization and restoration of limited wetland resources and for the sustainable development of the regional eco-environment in the Heihe River Basin.
基金The National Natural Science Foundation of China under contract Nos 41890851 and 41521005the Key Research Program of Frontier Sciences,Chinese Academy of Sciences under contract No.QYZDJ-SSW-DQC034the Foundation of Institution of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences under contract No.ISEE2018PY05
文摘A three-dimensional wave-current-sediment coupled numerical model is developed to understand the sediment transport dynamics in the Zhujiang(Pearl)River Estuary(ZRE),China.The model results are in good agreement with observed data,and statistics show good model skill scores.Numerical studies are conducted to assess the scenarios of suspended sediment in the ZRE under the effects of different forcing(river discharges,waves,and winds).The model results indicate that the estuarine gravitational circulation plays an important role in the development of estuarine turbidity maximum in the ZRE,particularly during neap tides.The increased river discharge can result in a seaward sediment transport.The suspended sediment concentration(SSC)in the bottom increases with both wave bottom orbital velocity and wave height.Because of the shallow water depth,the effect of waves on sediment in the west shoal is greater than that in the east channel.The southwesterly wind-induced wave affects the SSC more than those resulting from the northeasterly wind,while the northeasterly wind-driven circulation has a slightly greater influence on the SSC than that of the southwesterly wind.However,a steady southwesterly wind condition favors the increase of the SSC in the Lingding Bay more so than a steady northeasterly wind condition.If the other forcings are same,the averaged SSC under a steady southwesterly wind condition is about 1.1 times that resulting from a steady northeasterly wind.
基金supported by the National Natural Science Foundation of China(Grants No.41330854 and 41371063)the National Key Research and Development Programs of China(Grants No.2016YFA0601601 and2016YFA0601501)
文摘Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources.
文摘A tracer model with random diffusion coupled to the hydrodynamic model for the Zhujiang River Estuary (Pearl River Estuary, PRE) is to examine the effect of circulations on the transport of completely conservative pollutants. It is focused on answering the following questions: (1) What role does the estuarine plume front in the winter play in affecting the pollutants transport and its distribution in the PRE ? (2) What effect do the coastal currents driven by the monsoon have on the pollutants transport? The tracer experiment results show that: (1) the pollutant transport paths strongly depend on the circulation structures and plume frontal dynamics of the PRE and coastal waters; (2) during the summer when a southwesterly monsoon prevails, the pollutants from the four easterly river inlets and those from the bottom layer of offshore stations will greatly influence the water quality in Hong Kong waters, however, the pollutants released from the four westerly river-inlets will seldom affect the water qual
基金Under the auspices of National Science and Technology Research during the 11th Five-Year Plan Period (No.2008BAI62B05)National Natural Science Foundation of China (No. 50879005,51179006)
文摘With the development of industry and agriculture,nitrogen,phosphorus and other nutrients in the Hanshui River greatly increase and eutrophication has become an important threat to the water quality of the Hanshui River,especially in the middle and lower reaches.The primary objective of this study was to establish the water quality model for the middle and lower reaches of the Hanshui River based on the model of MIKE 11.The main pollutants migration and transformation process could be simulated using the water quality model.The rainfall-runoff model,hy-drodynamic model and water quality model were established using MIKE 11.The pollutants,such as chemical oxygen demand(COD),biochemical oxygen demand(BOD),ammonia nitrogen,nitrate nitrogen,phosphorus,dissolved oxy-gen(DO),were simulated and predicted using the above three models.A set of methods computing non-point source pollution load of the Hanshui River Basin was proposed in this study.The simulated and observed values of COD,BOD5,ammonia,nitrate,DO,and total phosphorus were compared after the parameter calibration of the water quality model.The simulated and observed results match better,thus the model can be used to predict water quality in the fu-ture for the Hanshui River.The pollution trend could be predicted using the water quality model according pollution load generation.It is helpful for government to take effective measures to prevent the water bloom and protect water quality in the river.
基金supported by the Research Directorate of the University of Cuenca(DIUC)
文摘Hydraulic models for the generation of flood inundation maps are not commonly applied in mountain river basins because of the difficulty in modeling the hydraulic behavior and the complex topography. This paper presents a comparative analysis of the performance of four twodimensional hydraulic models (HEC-RAS 2D, Iber 2D, Flood Modeller 2D, and PCSWMM 2D) with respect to the generation of flood inundation maps. The study area covers a 5-km reach of the Santa B-arbara River located in the Ecuadorian Andes, at 2330 masl, in Gualaceo. The model's performance was evaluated based on the water surface elevation and flood extent, in terms of the mean absolute difference and measure of fit. The analysis revealed that, for a given case, Iber 2D has the best performance in simulating the water level and inundation for flood events with 20- and 50-year return periods, respectively, followed by Flood Modeller 2D, HEC-RAS 2D, and PCSWMM 2D in terms of their performance. Grid resolution, the way in which hydraulic structures are mimicked, the model code, and the default value of the parameters are considered the main sources of prediction uncertainty.
基金Under the auspices of National Natural Science Foundation of China(No.40801069)Special Research Program for Public-welfare Forestry of China(No.200804001)
文摘This paper firstly investigated the land-use and land-cover change (LUCC) in the Hun-Taizi River water- shed, Northeast China from 1988 to 2004 based on remotely sensed images and geographic information systems (GIS) technology. Then, using the famous land-use change model of Conversion of Land Use and its Effects at Small re- gional extent (CLUE-S), this paper simulated the land use changes under historical trend (HT), urban planning (UP) and ecological protection (EP) scenarios considering urban planning and ecological protection over the next 20 years. The simulated results under UP scenario in 2020 were compared with the planning map to assess the feasibility of us- ing land-use change model to guide regional planning. Results show that forest land, dry farmland, paddy, and shrub land were the main land-use categories. Paddy and dry farmland being converted to urban area and rural settlement characterized the land-use change from 1988 to 2004. The main land-use categories changed over time. Landscape-pattem fragmentation will be worse under HT and UP scenarios, but better in EP scenario. The comparing results of simulated map with planning map in 2020 show that land-use change model is powerful tool to guide regional planning. Land-use scenarios can support regional planning and policy-making through analyzing future consequences scientifically.
文摘Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well.