期刊文献+
共找到10,355篇文章
< 1 2 250 >
每页显示 20 50 100
River width and depth as key factors of diurnal activity energy expenditure allocation for wintering Spot-billed Ducks in the Xin'an River Basin
1
作者 Chao Yu Xuying Lu +3 位作者 Deli Sun Mengnan Chu Xueyun Li Qun Li 《Avian Research》 SCIE CSCD 2024年第1期116-122,共7页
Rivers are important habitats for wintering waterbirds.However,they are easily influenced by natural and human activities.An important approach for waterbirds to adapt to habitats is adjusting the activity time and en... Rivers are important habitats for wintering waterbirds.However,they are easily influenced by natural and human activities.An important approach for waterbirds to adapt to habitats is adjusting the activity time and energy expenditure allocation of diurnal behavior.The compensatory foraging hypothesis predicts that increased energy expenditure leads to longer foraging time,which in turn increases food intake and helps maintain a constant energy balance.However,it is unclear whether human-disturbed habitats result in increased energy expenditure related to safety or foraging.In this study,the scan sample method was used to observe the diurnal behavior of the wintering Spot-billed Duck(Anas poecilorhyncha) in two rivers in the Xin’an River Basin from October 2021 to March 2022.The allocation of time and energy expenditure for activity in both normal and disturbed environments was calculated.The results showed that foraging accounted for the highest percentage of time and energy expenditure.Additionally,foraging decreased in the disturbed environment than that in the normal environment.Resting behavior showed the opposite trend,while other behaviors were similar in both environments.The total diurnal energy expenditure of ducks in the disturbed environment was greater than that in the normal environment,with decreased foraging and resting time percentage and increased behaviors related to immediate safety(swimming and alert) and comfort.These results oppose the compensatory foraging hypothesis in favor of increased security.The optimal diurnal energy expenditure model included river width and water depth,which had a positive relationship;an increase in either of these two factors resulted in an increase in energy expenditure.This study provides a better understanding of energy allocation strategies underlying the superficial time allocation of wintering waterbirds according to environmental conditions.Exploring these changes can help understand the maximum fitness of wintering waterbirds in response to nature and human influences. 展开更多
关键词 Diurnal behavior activities river factors Time and energy expenditure allocation Wintering Spot-billed Duck xin’an river Basin
下载PDF
Modelling Land Use/Land Cover Change of River Rwizi Catchment, South-Western Uganda Using GIS and Markov Chain Model
2
作者 Lauben Muhangane Morgan Andama 《Journal of Water Resource and Protection》 CAS 2024年第2期181-206,共26页
Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 19... Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products. 展开更多
关键词 Land Cover river Catchment Geographic Information System Markov model Sustainable Land Management
下载PDF
Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models
3
作者 Zhigao Chen Yan Zong +2 位作者 Zihao Wu Zhiyu Kuang Shengping Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期40-51,共12页
The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended inter... The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended intervals and time delays in time series data.Additionally,the sequence-to-sequence(Seq2Seq)model,known for handling temporal relationships,adapting to variable-length sequences,effectively capturing historical information,and accommodating various influencing factors,emerges as a robust and flexible tool in discharge forecasting.In this study,we introduce the application of LSTM-based Seq2Seq models for the first time in forecasting the discharge of a tidal reach of the Changjiang River(Yangtze River)Estuary.This study focuses on discharge forecasting using three key input characteristics:flow velocity,water level,and discharge,which means the structure of multiple input and single output is adopted.The experiment used the discharge data of the whole year of 2020,of which the first 80%is used as the training set,and the last 20%is used as the test set.This means that the data covers different tidal cycles,which helps to test the forecasting effect of different models in different tidal cycles and different runoff.The experimental results indicate that the proposed models demonstrate advantages in long-term,mid-term,and short-term discharge forecasting.The Seq2Seq models improved by 6%-60%and 5%-20%of the relative standard deviation compared to the harmonic analysis models and improved back propagation neural network models in discharge prediction,respectively.In addition,the relative accuracy of the Seq2Seq model is 1%to 3%higher than that of the LSTM model.Analytical assessment of the prediction errors shows that the Seq2Seq models are insensitive to the forecast lead time and they can capture characteristic values such as maximum flood tide flow and maximum ebb tide flow in the tidal cycle well.This indicates the significance of the Seq2Seq models. 展开更多
关键词 discharge prediction long short-term memory networks sequence-to-sequence(Seq2Seq)model tidal river back propagation neural network Changjiang river(Yangtze river)Estuary
下载PDF
Assessment of sediment connectivity using modelling and field-based approaches in the Slavíč River catchment(MoravskoslezskéBeskydy Mts,Czech Republic)
4
作者 MACUROVÁ Tereza ŠKARPICH Václav 《Journal of Mountain Science》 SCIE CSCD 2024年第3期734-753,共20页
Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and c... Mountain streams act as conveyors of sediments within the river continuum,where the physical transport of sediments between river reaches through the catchment or between individual parts(e.g.,between hillslopes and channels)of the catchment is assumed.This study focused on sediment connectivity analysis in the SlavíčRiver catchment in the MoravskoslezskéBeskydy Mts in the eastern part of the Czech Republic.The connectivity index and connectivity index target modelling were combined with an analysis of anthropogenic interventions.Additionally,field mapping,grain size of bed sediments and stream power analysis were used to obtain information about connectivity in the catchment.Based on the analysis and obtained results,terrain topography is the current main driving factor affecting the connectivity of sediment movement in the SlavíčRiver catchment.However,the modelling provided valuable information about high sediment connectivity despite different recent land use conditions(highly forested area of the catchment)than those in historical times from the 16th to 19th centuries when the SlavíčRiver catchment was highly deforested and sediment connectivity was probably higher.The analysis of anthropogenic interventions,field mapping,grain size of bed sediments and stream power analysis revealed more deceleration of sediment movement through the catchment,decreased sediment connectivity with bed erosion,and gradual river channel process transformation in some reaches.Field mapping has identified various natural formations and human-induced changes impacting the longitudinal and lateral connectivity in the SlavíčRiver.For instance,embankments along 48%of the river's length,both on the right and left banks,significantly hinder lateral sediment supply to the channel.Stream power index analysis indicates increased energy levels in the flowing water in the river's upper reaches(up to 404.8 W m^(-2)).This high energy is also observed in certain downstream sections(up to 337.6 W m^(-2)),where it is influenced by human activities.These conditions lead to intensified erosion processes,playing a crucial role in sediment connectivity.Similar observations were described in recent studies that pointed out the long-term human interventions on many streams draining European mountains,where a decrease in sediment connectivity in these streams is linked with sediment deficits and the transformation of processes forming channels. 展开更多
关键词 Mountain stream Connectivity analysis modelLING Grain size analysis Slavíčriver MoravskoslezskéBeskydy Mts
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
5
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response Coupled model Intercomparison Project 6(CMIP6) MIKE SHE(Système Hydrologique Europeén) Dulong-Irrawaddy river Basin
下载PDF
Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model 被引量:2
6
作者 CAO Yijie MA Yonggang +2 位作者 BAO Anming CHANG Cun LIU Tie 《Journal of Arid Land》 SCIE CSCD 2023年第12期1455-1473,共19页
The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w... The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD. 展开更多
关键词 water conservation function water yield Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model climate change land use/land cover change(LUCC) Ili river Delta Lake Balkhash
下载PDF
Application of TOPMODEL in Buliu River Basin and comparison with Xin’anjiang model 被引量:4
7
作者 Deng Peng Li Zhijia Xie Fan 《Water Science and Engineering》 EI CAS 2008年第2期25-32,共8页
Along with the rapid development of computer and GIS technology, hydrological models have progressed from lumped to distributed models. TOPMODEL, a bridge between lumped and distributed models, is a semi-distributed m... Along with the rapid development of computer and GIS technology, hydrological models have progressed from lumped to distributed models. TOPMODEL, a bridge between lumped and distributed models, is a semi-distributed model in which the predominant factors determining the formation of runoff are derived from the topography of the basin. A test application of TOPMODEL in the Buliu River Basin is presented. For the sake of comprehensively evaluating the TOPMODEL, the Xin’anjiang model, a classic lumped hydrological model, was also applied in the basin. The structural differences and the simulation results of the two models are compared and analyzed. 展开更多
关键词 TOPmodel the Buliu river Basin topographic index the xin’anjiang model
下载PDF
Vulnerability assessment of coastal wetlands in Minjiang River Estuary based on cloud model under sea level rise
8
作者 Xiaohe Lai Chuqing Zeng +4 位作者 Yan Su Shaoxiang Huang Jianping Jia Cheng Chen Jun Jiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第7期160-174,共15页
The change of coastal wetland vulnerability affects the ecological environment and the economic development of the estuary area.In the past,most of the assessment studies on the vulnerability of coastal ecosystems sta... The change of coastal wetland vulnerability affects the ecological environment and the economic development of the estuary area.In the past,most of the assessment studies on the vulnerability of coastal ecosystems stayed in static qualitative research,lacking predictability,and the qualitative and quantitative relationship was not objective enough.In this study,the“Source-Pathway-Receptor-Consequence”model and the Intergovernmental Panel on Climate Change vulnerability definition were used to analyze the main impact of sea level rise caused by climate change on coastal wetland ecosystem in Minjiang River Estuary.The results show that:(1)With the increase of time and carbon emission,the area of high vulnerability and the higher vulnerability increased continuously,and the area of low vulnerability and the lower vulnerability decreased.(2)The eastern and northeastern part of the Culu Island in the Minjiang River Estuary of Fujian Province and the eastern coastal wetland of Meihua Town in Changle District are areas with high vulnerability risk.The area of high vulnerability area of coastal wetland under high emission scenario is wider than that under low emission scenario.(3)Under different sea level rise scenarios,elevation has the greatest impact on the vulnerability of coastal wetlands,and slope has less impact.The impact of sea level rise caused by climate change on the coastal wetland ecosystem in the Minjiang River Estuary is mainly manifested in the sea level rise,which changes the habitat elevation and daily flooding time of coastal wetlands,and then affects the survival and distribution of coastal wetland ecosystems. 展开更多
关键词 vulnerability assessment cloud model coastal wetland Minjiang river Estuary
下载PDF
Evaluation of Water Resources Carrying Capacity in Gansu Section of Yellow River Basin Based on Fuzzy Comprehensive Evaluation Model
9
作者 Shuanbao LIN 《Meteorological and Environmental Research》 CAS 2023年第4期42-45,49,共5页
As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically ev... As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin. 展开更多
关键词 Fuzzy comprehensive evaluation model Water resources carrying capacity EVALUATION Yellow river basin Gansu section
下载PDF
Application of SWAT Model to Non-point Source Pollution in Xincai River Basin 被引量:3
10
作者 WANG Jing-shen 《Meteorological and Environmental Research》 2012年第9期1-4,共4页
[Objective]The study aimed to simulate the production and transportation process of surface runoff,sediment and non-point source pollution in Xincai River basin based on SWAT model.[Method]On the basis of analyzing th... [Objective]The study aimed to simulate the production and transportation process of surface runoff,sediment and non-point source pollution in Xincai River basin based on SWAT model.[Method]On the basis of analyzing the principles of SWAT model,the correlative parameters of runoff,sediment and water quality were calibrated,then the spatial and temporal distribution of runoff,sediment and non-point source pollutants in Xincai River basin were studied by using SWAT model.[Result]The results of calibration and validation showed that SWAT model was reasonable and available,and it can be used to simulate the non-point source pollution of Xincai River basin.The simulation results revealed that the load of sediment and various pollutants was the highest in the rainy year,followed by the normal year,while it was the minimum in the dry year,indicating that the production of sediment and non-point source pollutants was closely related to annual runoff.[Conclusion]The research could provide scientific references for the prevention of non-point source pollution in a basin. 展开更多
关键词 Non-point source pollution SWAT model Parameter calibration xincai river basin China
下载PDF
A numerical model study on the spatial and temporal variabilities of dissolved oxygen in Qinzhou Bay of the northern Beibu Gulf
11
作者 Gaolei Cheng Shiqiu Peng +1 位作者 Bin Yang Dongliang Lu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期49-59,共11页
Oxygen facilitates the breakdown of the organic material to provide energy for life.The concentration of dissolved oxygen(DO) in the water must exceed a certain threshold to support the normal metabolism of marine org... Oxygen facilitates the breakdown of the organic material to provide energy for life.The concentration of dissolved oxygen(DO) in the water must exceed a certain threshold to support the normal metabolism of marine organisms.Located in the northern B eibu Gulf,Qinzhou B ay receives abundant freshwater and nutrients from several rivers which significantly influence the level of the dissolved oxygen.However,the spatial-temporal variations of DO as well as the associated driving mechanisms have been rarely studied through field observations.In this study,a three-dimension al coupled physical-biogeochemical model is used to investigate the spatial and seasonal variations of the DO and the associated driving mechanisms in Qinzhou B ay.The validation against observations indicates that the model can capture the seasonal and inter-annual variability of the DO concentration with the range of 5-10 mg/L.Sensitivity experiments show that the river discharges,winds and tides play crucial roles in the seasonal variability of the DO by changing the vertical mixing and stratification of the water column and the circulation pattern.In winter,the tide and wind forces have strong effects on the DO distribution by enhancing the vertical mixing,especially near the bay mouth.In summer,the river discharges play a dominant role in the DO distribution by inhibiting the vertical water exchange and delivering more nutrients to the Bay,which increases the DO depletion and results in lower DO on the bottom of the estuary salt wedge.These findings can contribute to the preservation and management of the coastal environment in the northern Beibu Gulf. 展开更多
关键词 river plume dissolved oxygen STRATIFICATION physical-biological model
下载PDF
Impact of Hinterland Manufacturing on the Development of Container Ports: Evidence from the Pearl River Delta, China
12
作者 HONG Haolin WANG Bo XUE Desheng 《Chinese Geographical Science》 SCIE CSCD 2024年第5期886-898,共13页
Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an examp... Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an example,applies Huff and panel regres-sion models to evaluate the impact of hinterland manufacturing on the development of container ports during the period of 1993–2019.The results show that 1)the spatial patterns of hinterlands for hub ports help to determine the distribution range and scale of economic variables that affect port throughput;2)the hinterland’s gross manufacturing output has universally positive influence on port through-put,wherein export-oriented processing and the entire manufacturing industry have significantly positive impact on port throughput in 1993–2011 and 2001–2019,respectively;3)the two internal structural factors related to an export-oriented economy,labor-intensive sectors and foreign-funded terminals,have positively moderate the direct influence of hinterland manufacturing on port throughput.Our results highlight the importance of local context in understanding port-manufacturing relationship in developing economies.Based on our findings,policy implications are further proposed to enhance port network organization in PRD. 展开更多
关键词 container ports hinterland manufacturing local development context Huff model panel regression model Pearl river Delta(PRD) China
下载PDF
Flood Forecasting Experiment Based on EC and WRF in the Bailian River Basin
13
作者 Zhiyuan YIN Fang YANG Xiaohua LI 《Meteorological and Environmental Research》 2024年第3期53-59,共7页
In order to extend the forecasting period of flood and improve the accuracy of flood forecasting,this paper took Bailian River Reservoir which located in Huanggang City of Hubei Province as an example and carried out ... In order to extend the forecasting period of flood and improve the accuracy of flood forecasting,this paper took Bailian River Reservoir which located in Huanggang City of Hubei Province as an example and carried out basin flood simulation and forecasting by coupling the quantitative precipitation forecasting products of numerical forecast operation model of Institute of Heavy Rain in Wuhan(WRF)and the European Center for Medium-range Weather Forecasts(ECMWF)with the three water sources Xin an River model.The experimental results showed that the spatiotemporal distribution of rainfall predicted by EC is closer to the actual situation compared to WRF;the efficiency coefficient and peak time difference of EC used for flood forecasting are comparable to WRF,but the average relative error of flood peaks is about 14%smaller than WRF.Overall,the precipitation forecasting products of the two numerical models can be used for flood forecasting in the Bailian River basin.Some forecasting indicators have certain reference value,and there is still significant room for improvement in the forecasting effects of the two models. 展开更多
关键词 Hydrometeor EC WRF xin an river model Bailian river
下载PDF
Glacier area change and its impact on runoff in the Manas River Basin,Northwest China from 2000 to 2020
14
作者 WANG Tongxia CHEN Fulong +5 位作者 LONG Aihua ZHANG Zhengyong HE Chaofei LYU Tingbo LIU Bo HUANG Yanhao 《Journal of Arid Land》 SCIE CSCD 2024年第7期877-894,共18页
Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this s... Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins. 展开更多
关键词 glacier area glacial runoff climate change glacier boundary extraction distributed degree-day model Manas river Basin
下载PDF
基于River 2D模型的黄河花园口河段生态流量研究
15
作者 龙瑞昊 马永胜 +1 位作者 任姗 雷凯旋 《水利与建筑工程学报》 2024年第1期213-219,共7页
针对目前生态流量研究方法难以充分考虑鱼类栖息地等生境因素的问题,以黄河花园口鲤鱼核心保护区为研究区域,选取黄河鲤鱼为研究物种,基于耦合水动力学模型和栖息地模型的River 2D模型确定黄河鲤鱼的生态流量,将水深和流速作为鱼类生存... 针对目前生态流量研究方法难以充分考虑鱼类栖息地等生境因素的问题,以黄河花园口鲤鱼核心保护区为研究区域,选取黄河鲤鱼为研究物种,基于耦合水动力学模型和栖息地模型的River 2D模型确定黄河鲤鱼的生态流量,将水深和流速作为鱼类生存保护的限定性因子,采用栖息地模型模拟不同流量下对应的黄河鲤鱼的适宜栖息地面积。计算结果表明:花园口河段鲤鱼产卵期的最小生态流量为230 m^(3)/s,生长期的最小生态流量为430 m^(3)/s,越冬期的最小生态流量为150 m^(3)/s。计算结果可以为花园口核心鱼类保护区的鱼类保护以及黄河小浪底水库的生态调度提供参考。 展开更多
关键词 生态流量 river 2D模型 栖息地 加权可用面积 黄河鲤鱼
下载PDF
Spatial Heterogeneity of Embedded Water Consumption from the Perspective of Virtual Water Surplus and Deficit in the Yellow River Basin,China
16
作者 MA Weijing LI Xiangjie +1 位作者 KOU Jingwen LI Chengyi 《Chinese Geographical Science》 SCIE CSCD 2024年第2期311-326,共16页
Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its i... Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity. 展开更多
关键词 virtual water trade(VWT) input-output model(MRIO) virtual water surplus virtual water deficit Yellow river Basin China
下载PDF
Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin,China
17
作者 LIN Yanmin HU Zhirui +5 位作者 LI Wenhui CHEN Haonan WANG Fang NAN Xiongxiong YANG Xuelong ZHANG Wenjun 《Journal of Arid Land》 SCIE CSCD 2024年第1期110-130,共21页
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this... Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas. 展开更多
关键词 carbon storage land use change nighttime light Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model patch-generating land use simulation(PLUS)model geographical detector(Geodetector) Yellow river Basin
下载PDF
Oxygen and hydrogen isotope characteristics of different water bodies in the Burqin River Basin of the Altay Mountains,China
18
作者 XIE Yida WANG Feiteng LIU Shuangshuang 《Journal of Arid Land》 SCIE CSCD 2024年第10期1365-1379,共15页
Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater... Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China. 展开更多
关键词 water bodies stable isotopes deuterium excess(d-excess) Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model Burqin river Basin Altay Mountains
下载PDF
Analysis of factors influencing carbon emissions in the Yangtze River Delta region and projections of carbon peak scenarios
19
作者 SHI Xiong-tian WU Feng-qing +1 位作者 CHEN Yang DAI Li-li 《Ecological Economy》 2024年第1期2-24,共23页
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon... Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled. 展开更多
关键词 Yangtze river Delta carbon peaking scenario forecasting STIRPAT model
下载PDF
Structural Characteristics and Influencing Factors of Carbon Emission Spatial Association Network:A Case Study of Yangtze River Delta City Cluster,China
20
作者 BI Xi SUN Renjin +2 位作者 HU Dongou SHI Hongling ZHANG Han 《Chinese Geographical Science》 SCIE CSCD 2024年第4期689-705,共17页
City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordi... City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies. 展开更多
关键词 carbon emission spatial association network social network analysis(SNA) quadratic assignment procedure(QAP)model Yangtze river Delta city cluster China
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部